[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

RS
ST,
A N\
| e
l\L > ‘/;,/
*Nomzoge is POWER

oh

WHE’

CENTY,
el

z
L

BTCS 503

System Analysis and Design

Course Title:

Course Code:

Unit:
Department:
Year:

Compiled by :

Email:
Contact:
Designation:
Department:

System Analysis and Design
BTCS

(NI ILY]

Department of IT

2020

Sheikh Rizwana
sheikhrizwanarashid@gmail.com

Teaching Assistant
Department of IT

Department of Information Technology

Central University of Kashmir

Tullmulla, Ganderbal, J&K -191131
www.cukashmir.ac.in

Pagel of 57

Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Section 1: Software Development Life Cycle

Software Develpment Life Cycle, SDLC for short, is a welefined, structured
sequence of stages in software engineering to develop the intended software produc

SDLC Activities

SDLC provides a series of steps to be followed to design and develop a software (fimtzrctye
SDLC framework includes the following steps:

Communication
Requirement Gathering
Feasibility Study
System Analysis
Software Design
S D LC Coding
Testing
Integration
Implementation
Operations & Maintenance

Disposition

Communication

This is the first step where the user initiates the request for a desired software product. The user
contacts the service provider and tries to negotiate the terms, submitgubst te the service
providing organization in writing.

Requirement Gathering

This step onwards the software development team works to carry on the project. The team
holds discussions with various stakeholders from problem domain and tries to brirgy out a
much information as possible on their requirements. The requirements are contemplated and
segregated into user requirements, system requirements and functional requirements. The
requirements are collected using a number of practices as-given

A studyingthe existing or obsolete system and software,
A conducting interviews of users and developers,

A referring to the database or
A

collecting answers from the questionnaires.
Feasibility Study

After requirement gathering, the team comes up with a rough pkoftafare process. At this
step the team analyzes if a software can be designed to fulfill all requirements of the user, and

Page2 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

if there is any possibility of software being no more useful. It is also analyzed if the project is
financially, practically, andeichnologically feasible for the organization to take up. There are
many algorithms available, which help the developers to conclude the feasibility of a software
project.

System Analysis

At this step the developers decide a roadmap of their plan atodring up the best software

model suitable for the project. System analysis includes understanding of software product
limitations, learning system related problems or changes to be done in existing systems
beforehand, identifying and addressing the iohp&project on organization and personnel etc.

The project team analyzes the scope of the project and plans the schedule and resources
accordingly.

Software Design

Next step is to bring down whole knowledge of requirements and analysis on the desk and
design the software product. The inputs from users and information gathered in requirement
gathering phase are the inputs of this step. The output of this step comes in the form of two
designs; logical design, and physical design. Engineers producedat@teand data
dictionaries, logical diagrams, déataw diagrams, and in some cases pseudo codes.

Coding

This step is also known as programming phase. The implementation of software design starts
in terms of writing program code in the suitable prograngnimguage and developing eror
free executable programs efficiently.

Testing

An estimate says that 50% of whole software development process should be tested. Errors
may ruin the software from critical level to its own removal. Software testing iswloife

coding by the developers and thorough testing is conducted by testing experts at various levels
of code such as module testipgogram testing, product testing;hiouse testing, and testing

the product at user '’ s e thar.remédy is thg keydto elaldey e r y
software.

Integration

Software may need to be integrated with the libraries, databases, and other program(s). This stage
SDLC is involved in the integration of software with outer world entities.

Implementation

This means installing the software on user machines. At times, software needsstadiation
configurations at user end. Software is tested for portability and adaptability and integration relate
issues are solved during implementation.

Page3 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Operation and Maintenance

This phase confirms the software operation in terms of more efficiency and less errors. If required, tt
users are trained on, or aided with the documentation on how to operate the software and how to ke
the software operational. The softwasemaintained timely by updating the code according to the
changes taking place in user end environment or technology. This phase may face challenges fr
hidden bugs and realorld unidentified problems.

Software Development Paradigm

The software develapent paradigm helps a developer to select a strategy to develop the software.
software development paradigm has its own set of tools, methods, and procedures, which &
expressed clearly and defines software development life cycle. A few of softwalepreset
paradigms or process models are defined as follows:

Waterfall Model

Waterfall model is the simplest model of software development paradigm. All the phases of SDLC(
will function one after another in linear manner. That is, when the first phsisiied then only the
second phase will start and so on.

Requirement Gathering/l/
System Analysiq/
Coding:l
Testiné/x

Waterfa" MOdel Implementation\/

Operations & Maintenance

This model assumes that everything is carried out and taken place perfectly as planned in the previc
stage and there is no need to think about the past issues that may arise in the nekhighaseel

does not work smoothly if there are some issues left at the previous step. The sequential nature
model does not allow us to go back and undo or redo our actions.

This model is best suited when developers already have designed and desehopedoftware in
the past and are aware of all its domains.

Iterative Model

This model leads the software development process in iterations. It projects the process
development in cyclic manner repeating every step after every cycle of SDLC process

Paged of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

e

n-1 iteration n n+1

The software is first developed on very small scale and all the steps are followed which are taken in
consideration. Then, on every next iteration, more features and modules are designed, coded, tes
and added to the software. Every cycle predug software, which is complete in itself and has more
features and capabilities than that of the previous one.

After each iteration, the management team can do work on risk management and prepare for the n
iteration. Because a cycle includes smaitipo of whole software process, it is easier to manage the
development process but it consumes more resources.

Spiral Model

Spiral model is a combination of both, iterative model and one of the SDLC model. It can be seen :
if you choose one SDLC modahd combined it with cyclic process (iterative model).

Pageb of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A,

[}
W

A
@
.
&%
3|8
= |
&)

Alternate

Objective Evaluation

|dentification

-
-
-

_ Review
o

e
- -
-
-
-
-
-
-

Product
v Development

Next Phase
Planning

Release

This model considers risk, which often goesnaticed by most other models. The model starts with
determining objectives and constraints of the software at the start of one iteration. Nexs fase i
prototyping the software. This includes risk analysis. Then one standard SDLC model is used to bui
the software. In the fourth phase of the plan of next iteration is prepared.

V T model

The major drawback of waterfall model is we move to the sige only when the previous one is
finished and there was no chance to go back if something is found wrong in later stitypetelV
provides means of testing of software at each stage in reverse manner.

Page6 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Requirement Gl s G G A G > Acceptance
Gathering Testing
System s > System

Analysis Testing _7‘
Software R > Integration
L Desigg Iesting
QAC "
e,

% Module . o Unit % \oe
%. : Design Testing >
() . \ 4 T -
2 A
N SN

Coading

At every stage, test plans and test cases aatert to verify and validate the product according to the
requirement of that stage. For example, in requirement gathering stage the test team prepares all
test cases in correspondence to the requirements. Later, when the product is developeaddyd is re
for testing, test cases of this stage verify the software against its validity towards requirements at tt
stage.

This makes both verification and validation go in parallel. This model is also known as verification
and validation model.

Big BangModel

This model is the simplest model in its form. It requires little planning, lots of programming and lots
of funds. This model is conceptualized around the big bang of universe. As scientists say that after t
bang lots of galaxies, planets, and'st&volved just as an event. Likewise, if we put together lots of
programming and funds, you may achieve the best software product.

Time
Efforts

Software

Resources

Page7 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

For this model, very small amount of planning is required. It does not follow any process, or at time
the customer isat sure about the requirements and future needs. So the input requirements ai
arbitrary.

This model is not suitable for large software projects but good one for learning and experimenting.

Section 2: Requirement Engineering

The software requimeents are description of features and functionalities of the target system.
Requirements convey the expectations of users from the software product. The requirements can
obvious or hidden, known or unknownview.expect e

Requirement Engineering

The process to gather the software requirements from client, analyze, and document them is known
requirement engineering.

The goal of requirement engineering is tem de
Requirements Specification’” document.

Requirement Engineering Process
It is a four step process, which includes

A Feasibility Study

A Requirement Gathering

A Software Requirement Specification
A Software Requirement Validation

Let us see the processdily -

Feasibility study

When the client approaches the organization for getting the desired product developed, it comes
with a rough idea about what all functions the software must perform and which all features ar
expected from the software.

Refaencing to this information, the analysts do a detailed study about whether the desired system a
its functionality are feasible to develop.

PageB of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

This feasibility study is focused towards goal of the organization. This study analyzes whether th
software prodct can be practically materialized in terms of implementation, contribution of project
to organization, cost constraints, and as per values and objectives of the organization. It explor
technical aspects of the project and product such as usabilitgtamability, productivity, and
integration ability.

The output of this phase should be a feasibility study report that should contain adequate commel
and recommendations for management about whether or not the project should be undertaken.

Requirement Gathering

If the feasibility report is positive towards undertaking the project, next phase starts with gatherini
requirements from the user. Analysts and engineers communicate with the client arsgrmsnib
know their ideas on what the software shquidvide and which features they want the software to
include.

Software Requirement Specification (SRS)

SRS is a document created by system analyst after the requirements are collected from varic
stakeholders.

SRS defines how the intended softwarel witeract with hardware, external interfaces, speed of
operation, response time of system, portability of software across various platforms, maintainability
speed of recovery after crashing, Security, Quality, Limitations etc.

The requirements receivdbm client are written in natural language. It is the responsibility of the
system analyst to document the requirements in technical language so that they can be comprehen
and used by the software development team.

SRS should come up with the followjifieatures:
A User Requirements are expressed in natural language.

A Technical requirements are expressed in structured language, which is used inside tl
organization.

A Design description should be written in Pseudo code.
A Format of Forms and GUI screenrqs.

A Conditional and mathematical notations for DFDs etc.

Software Requirement Validation

After requirement specifications are developed, the requirements mentioned in this document a
validated. User might ask for illegal, impractical solution or espmay interpret the requirements
inaccurately. This results in huge increase in cost if not nipped in the bud. Requirements can |
checked against following conditions

Paged of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

If they can be practically implemented

If they are valid and as per functionalagd domain of software
If there are any ambiguities
If they are complete

Do o o o P>

If they can be demonstrated

Requirement Elicitation Process

Requirement elicitation process can be depicted using the folloiwng diagram:

Requirement Requirement Negotiation & Requirement

Gathering Organisation Discussion Specification

A Requirements gathering- The developes discuss with the client and end users and know
their expectations from the software.

A Organizing Requirements- The developers prioritize and arrange the requirements in order
of importance, urgency and convenience.

A Negotiation & discussion- If requirements are ambiguous or there are some conflicts in
requirements of various stakeholders, it is then negotiated and discussed with the stakeholde
Requirements may then be prioritized and reasonably compromised.

The requirements come from various stakdars. To remove the ambiguity and conflicts,
they are discussed for clarity and correctness. Unrealistic requirements are compromise
reasonably.

A Documentation - All formal and informal, functional and nefanctional requirements are
documented and madwailable for next phase processing.

Requirement Elicitation Techniques

Requirements Elicitation is the process to find out the requirements for an intended software syste
by communicating with client, end users, system users, and others who hawe ia #te software
system development.

There are various ways to discover requirements. Some of them are explained below:
Interviews

Interviews are strong medium to collect requirements. Organization may conduct several types
interviews such as:

A Structured (closed) interviews, where every single information to gather is decided in advance

they follow pattern and matter of discussion firmly.
PagelOof 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A Non-structured (open) interviews, where information to gather is not decided in advance, mor:
flexible and less biased.

Oral interviews
Written interviews

Oneto-one interviews which are held between two persons across the table.

To o Do Do

Group interviews which are held between groups of participants. They help to uncover an
missing requirement as numerous peopldararelved.

Surveys

Organization may conduct surveys among various stakeholders by querying about their expectati
and requirements from the upcoming system.

Questionnaires

A document with pralefined set of objective questions and respective opteoharided over to all
stakeholders to answer, which are collected and compiled.

A shortcoming of this technique is, if an option for some issue is not mentioned in the questionnair
the issue might be left unattended.

Task analysis

Team of engineers amtkvelopers may analyze the operation for which the new system is required. If
the client already has some software to perform certain operation, it is studied and requirements
proposed system are collected.

Domain Analysis

Every software falls intosne domain category. The expert people in the domain can be a great hely
to analyze general and specific requirements.

Brainstorming

An informal debate is held among various stakeholders and all their inputs are recorded for furthe
requirements analysis

Prototyping

Prototyping is building user interface without adding detail functionality for user to interpret the
features of intended software product. It helps giving better idea of requirements. If there is n
software installeweladpecrl’isenrtéfsereenndc ef oarndd t h ¢
requirements, the developer creates a prototype based on initially mentioned requirements. T
prototype is shown to the client and the feedback is noted. The client feedback serves as an input
requirement gathering.

Pagellof 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Observation
Team of experts visit the client’s organizat
existing installed systems. They observe the

are dealt. Théeam itself draws some conclusions which aid to form requirements expected from the
software.

Software Requirements Characteristics

Gathering software requirements is the foundation of the entire software development project. Hen
they must be clear, o®ct, and weldefined.

A complete Software Requirement Specifications must be:

A Clear

Correct
Consistent
Coherent
Comprehensible
Modifiable
Verifiable
Prioritized
Unambiguous

Traceable

To o Do o Do o Io Do I»

Credible source

Software Requirements

We should try to nderstand what sort of requirements may arise in the requirement elicitation phas
and what kinds of requirement are expected from the software system.

Broadly software requirements should be categorized in two categories:

Functional Requirements
Requiements, which are related to functional aspect of software fall into this category.

They define functions and functionality within and from the software system.
EXAMPLES -
A Search option given to user to search from various invoices.

A User should be able mail any report to management.

Pagel2of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A Users can be divided into groups and groups can be given separate rights.

A Should comply business rules and administrative functions.

A Software is developed keeping downward compatibility intact.

Non-Functional Requirements

Requirements, which are not related to functional aspect of software, fall into this category. They ai
implicit or expected characteristics of software, which users make assumption of.

Non-functional requirements include

A Security
LoggingO Storage
Configuration
Performance
Cost
Interoperability
Flexibility

Do o o o o o o

Disaster recovery
A Accessibility

Requirements are categorized logically as:
A Must Have : Software cannot be said operational without them.
A Should have: Enhancing the functionality software.
A Could have: Software can still properly function with these requirements.
A

Wish list : These requirements do not map to any objectives of software.

Whil e developing software, ‘*Must have’ mu s t
with stakehol ders and negati on, whereas *Co
updates.

User Interface requirements

User Interface (Ul) is an important part of any software or hardware or hybrid system. A software i
widely accepted if its —

A easy to operate

A quick in response

A effectively handling operational errors

A

providing simple yet consistent user interface

Pagel3of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

User acceptance majorly depends upon how user can use the software. Ul is the only way for users
perceive the system. vell performing software system must also be equipped with attractive, clear,
consistent, and responsive user interface. Otherwise the functionalities of software system can not
used in convenient way. A system is said to be good if it provides mease tbefficiently. User
interface requirements are briefly mentioned below

A Content presentation

Easy Navigation

Simple interface

Responsive

Consistent Ul elements
Feedback mechanism

Default settings

Purposeful layout

Strategical use of col@and texture.
Provide help information

User centric approach

To T Do P Do o o Do I» e

Group based view settings.

Software System Analyst

System analyst in an IT organization is a person, who analyzes the requirement of proposed syst
and ensures that requirements are condearal documented properly and acuurately. Role of an
analyst starts during Software Analysis Phase of SDLC. It is the responsibility of analyst to make sul
that the developed software meets the requirements of the client.

System Analysts have the follavg responsibilities:

A Analyzing and understanding requirements of intended software
Understanding how the project will contribute to the organizational objectives
Identify sources of requirement
Validation of requirement
Develop and implement requirentemanagement plan
Documentation of business, technical, process, and product requirements

Coordination with clients to prioritize requirements and remove ambiguity

Do o P P o T >

Finalizing acceptance criteria with client and other stakeholders

Pagel4 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Section 3:Software Design Basics

Software design is a process to transform user requirements into some suitable form, which helps 1
programmer in software coding and implementation.

For assessing user requirements, an SRS (Software Requirement Specification) doctneateidis
whereas for coding and implementation, there is a need of more specific and detailed requirements
software terms. The output of this process can directly be used into implementation in programmir
languages.

Software design is the first step ISDLC (Software Design Life Cycle), which moves the
concentration from problem domain to solution domain. It tries to specify how to fulfill the
requirements mentioned in SRS.

Software Design Levels

Software design yields three levels of results:

A Architectural Design- The architectural design is the highest abstract version of the system.
It identifies the software as a system with many components interacting with each other. A
this level, the designers get the idea of proposed solution domain.

A High-level Design- The highl e v e | design breaks the ' si
concept of architectural design into ledsstracted view of sufystems and modules and
depicts their interaction with each other. Higkel design focuses on how the gystalong
with all of its components can be implemented in forms of modules. It recognizes modular
structure of each sufystem and their relation and interaction among each other.

A Detailed Design Detailed design deals with the implementation part of vilhaeen as a
system and its subystems in the previous two designs. It is more detailed towards modules
and their implementations. It defines logical structure of each module and their interfaces t
communicate with other modules.

Modularization

Modularization is a technique to divide a software system into multiple discrete and independen
modules, which are expected to be capable of carrying out task(s) independently. These modules n
work as basic constructs for the entire software. Designersdeatesign modules such that they can

be executed and/or compiled separately and independently.

Pagel5of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Modul ar design unintentionally follows the r
is because there are many other benefits attached withathelar design of a software.

Advantage of modularization:

A Smaller components are easier to maintain

Program can be divided based on functional aspects
Desired level of abstraction can be brought in the program
Components with high cohesion can baised again

Concurrent execution can be made possible

Do o Do Do

Desired from security aspect

Concurrency

Back in time, all software are meant to be executed sequentially. By sequential execution, we me.
that the coded instruction will be executed one aftetr@mamplying only one portion of program
being activated at any given time. Say, a software has multiple modules, then only one of all th
modules can be found active at any time of execution.

In software design, concurrency is implemented by splittiegsoftware into multiple independent
units of execution, like modules and executing them in parallel. In other words, concurrency provide
capability to the software to execute more than one part of code in parallel to each other.

It is necessary for therogrammers and designers to recognize those modules, which can be mad
parallel execution.

Example

The spell check feature in word processor is a module of software, which runs along side the wo
processor itself.

Coupling and Cohesion

When a softwee program is modularized, its tasks are divided into several modules based on som
characteristics. As we know, modules are set of instructions put together in order to achieve sor
tasks. They are though, considered as a single entity but, may reémhtoteer to work together.
There are measures by which the quality of a design of modules and their interaction among them ¢
be measured. These measures are called coupling and cohesion.

Cohesion

Cohesion is a measure that defines the degree ofdapandability within elements of a module. The
greater the cohesion, the better is the program design. There are seven types of cohesion, namely

Pagel6 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A

Co-incidental cohesion- It is unplanned and random cohesion, which might be the result of
breaking the pramm into smaller modules for the sake of modularization. Because it is
unplanned, it may serve confusion to the programmers and is generadigcepted.

Logical cohesion- When logically categorized elements are put together into a module, it is
calledlogical cohesion.

Emporal Cohesion- When elements of module are organized such that they are processed &
a similar point of time, it is called temporal cohesion.

Procedural cohesion- When elements of module are grouped together, which are executed
seqientially in order to perform a task, it is called procedural cohesion.

Communicational cohesion- When elements of module are grouped together, which are
executed sequentially and work on same data (information), it is called communicationa
cohesion.

Sequential cohesion- When elements of module are grouped because the output of one
element serves as input to another and so on, it is called sequential cohesion.

Functional cohesion- It is considered to be the highest degree of cohesion, and it iy highl
expected. Elements of module in functional cohesion are grouped because they all contribu
to a single weldefined function. It can also be reused.

Coupling

Coupling is a measure that defines the level of idegrendability among modules opeogran. It
tells at what level the modules interfere and interact with each other. The lower the coupling, the bett
the program.

There are five levels of coupling, namely

A

Content coupling - When a module can directly access or modify or refer to the roote
another module, it is called content level coupling.

Common coupling When multiple modules have read and write access to some global data,
it is called common or global coupling.

Control coupling- Two modules are called controbupled if one ofttem decides the function
of the other module or changes its flow of execution.

Stamp coupling When multiple modules share common data structure and work on different
part of it, it is called stamp coupling.

Data coupling Data coupling is when two modzd interact with each other by means of
passing data (as parameter). If a module passes data structure as parameter, then the recei
module should use all its components.

Ideally, no coupling is considered to be the best.

Pagel7 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Design Verification

The outpt of software design process is design documentation, pseudo codes, detailed logic diagran
process diagrams, and detailed description of all functional efummtional requirements.

The next phase, which is the implementation of software, deperalsauiputs mentioned above.

It is then becomes necessary to verify the output before proceeding to the next phase. The early «
mistake is detected, the better it is or it might not be detected until testing of the product. If the outpu
of design phasare in formal notation form, then their associated tools for verification should be usec
otherwise a thorough design review can be used for verification and validation.

By structured verification approach, reviewers can detect defects that might &e lbgaserlooking
some conditions. A good design review is important for good software design, accuracy, and qualit

Section 4: Software Analysis and Design Tools

Software analysis and design includes all activities, which help the transformatemumément
specification into implementation. Requirement specifications specify all functional and non
functional expectations from the software. These requirement specifications come in the shape of
human readable and understandable documents, to immputer has nothing to do.

Software analysis and design is the intermediate stage, which helps humanreadable requirement:
be transformed into actual code.

Let us see few analysis and design tools used by software designers:

Data Flow Diagram

Data Flow Diagram (DFD) is a graphical representation of flow of data in an information
system. It is capable of depicting incoming data flow, outgoing data flow, and stored data. The
DFD does not mention anything about how data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart depicts flow of
control in program modules. DFDs depict flow of data in the system at various levels. It does
not contain any control or branch elements.

Types of DFD

Data Flow Diagrars are either Logical or Physical.

A Logical DFD - This type of DFD concentrates on the system process, and flow of data
in the system. For example in a banking software system, how data is moved between
different entities.

Pagel8of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A Physical DFD- This type of DFD Bows how the data flow is actually implemented in
the system. It is more specific and close to the implementation.

DFD Components

DFD can represent source, destination, storage, and flow of data using the following set of componer

Data Flow
. _
Entity Data Store

A Entities - Entities are sources and destinations of information data. Entities are
represented by rectangles with their respective names.

A Process- Activities and action taken on the data are represented by Circle or-Round
edged rectangles.

A Data Storage- There arewo variants of data storagé can either be represented as a
rectangle with absence of both smaller sides or as ansigped rectangle with only
one side missing.

A Data Flow - Movement of data is shown by pointed arrows. Data movement is shown
from thebase of arrow as its source towards head of the arrow as destination.

Levels of DFD

A Level 0- Highest abstraction level DFD is known as Level 0 DFD, which depicts the
entire information system as one diagram concealing all the underlying detailsOLevel
DFDs are also known as context level DFDs.

Online Shopping System

¥ 1

Order
Alanijag

L

|

Customers

Pagel9of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A Level 1- The Level 0 DFD is broken down into more specific, Level 1 DFD. Level 1
DFD depicts basic modules in the system and flow of data among various modules.
Level 1 DFD also mentions basic processessanuices of information.

Accounts

Finance 1

Verification
CustomerData « (RS
Y=\ Processing

Stores

Issue
ltem

Process

Order
fanllaq

k J

Customers

A Level 2- At this level, DFD shows how data flows inside the modules mentioned in
Level 1.

Higher level DFDs can be transformed into more specific lower level DFDs with deeper
level of understanding unless the desired levepectification is achieved.

Structure Charts

Structure chart is a chart derived from Data Flow Diagram. It represents the system in more
detail than DFD. It breaks down the entire system into lowest functional modules, describes
functions and suunctions of each module of the system to a greater detail than DFD.

Structure chart represents hierarchical structure of modules. At each layer a specific task is perform

Here are the symbols used in construction of structure charts

A Module - It represerd process or subroutine or task. A control module branches to more than
one submodule. Library Modules are+#sable and invokable from any module.

Page20of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Control Mndule{

Module

b b

Sub-Module Library Module

A Condition - It is represented by small diamond at base of the module. It depicts that control
module @an select any of suitmutine based on some condition.

A Jump - An arrow is shown pointing inside the module to depict that the control will jump in
the middle of the suimodule.

A Loop - A curved arrow represents loop in the module. Allsuidules coered by loop repeat
execution of module.

Page21 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Module
"/

Module

A Data flow - A directed arrow with empty circle at the end represents data flow.

Labels

J I

Labels
vodule
A Control flow - A directed arrow with filled circle at the end represents control flow.

Labels

! !

Labels

HIPO Diagram

Hierarchical Input Process OutpttlPO) diagram is a combination of two organized methods
to analyze the system and provide the means of documentation. HIPO model was developed
by IBM in year 1970.

HIPO diagram represents the hierarchy of modules in the software system. Analyst uses HIPC
diagram in order to obtain higlvel view of system functions. It decomposes functions inte sub
functions in a hierarchical manner. It depicts the functions performed by system.

HIPO diagrams are good for documentation purpose. Their graphical reptiesemiakes it
easier for designers and managers to get the pictorial idea of the system structure.

Page22 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Online

Sales

Inventory Paymant
Authentication Check Dispatch hem
Issue_ltam Hem_Missing

Daduct
Imventory

In contrast to Input Process Output (IPO) diagram, which depicts the flow of control and data
in a module, HIPO does not provide any information ablatd flow or control flow.

Authentication

Input Process Qutput

take authentication credentials
from user-screen

)
User Screen EII> Check validity of credentials _L> User Screen

Call Appropriate Module

Example

Both parts of HIPO diagram, Hierarchical presentation, and IPO Chart are used for structure designi
of software program as well as documentation of the same.

Structured English

Most programmers are unaware of ke picture of software so they only rely on what their
managers tell them to do. It is the responsibility of higher software management to provide
accurate information to the programmers to develop accurate yet fast code.

Different methods, which uggaphs or diagrams, at times might be interpreted in a different way
by different people.

Hence, analysts and designers of the software come up with tools such as Structured English.
It is nothing but the description of what is required to code and hawde it. Structured
English helps the programmer to write efficme code. Here, both Structured English and
PseudeCode tries to mitigate that understanding gap.

Page23of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Structured English uses plain English words in structured programming paradigm. Ihis not t
ultimate code but a kind of description what is required to code and how to code it. The
following are some tokens of structured programming:

IF - THEN ELSE
DO WHILE UNTIL

Analyst uses the same variable and data name, which are stored in Dataabjctioaking it much
simpler to write and understand the code.

Example

We take the same example of Customer Authentication in the online shopping environment.
This procedure to authenticate customer can be written in Structured English as:

EnterCustome_Name
SEEKCustomer_Nama Customer_Name_DHBle
IF Customer_Naméund THEN
Call procedure USER_PASSWORD_AUTHENTICATE
ELSE
PRINT error message
Call procedure NEW_CUSTOMER_REQUEST
ENDIF
The code written in Structured English is mbke dayto-day spoken English. It can not be

implemented directly as a code of software. Structured English is independent of programming
language.

PseudeCode

Pseudo code is written more close to programming language. It may be considered as augmented
programming language, full of comments, and descriptions.

Pseudo code avoids variable declaration but they are written using some actual programmir
|l anguage’s construct s, l'i ke C, Fortran, Pasc

Pseudo code contains more programming details thract@red English. It provides a method to
perform the task, as if a computer is executing the code.

Page24 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Example

Program to print Fibonacci up to n numbers.

void function Fibonacci

Get value of n

Set value of ato 1;
Set value of b to 1;
Initialize Ito O

for (i=0; i< n; i++)
{ if agreaterthanb
{
Increaseb by a;
Printb;
} elseif b greater than a
{ increase &y b;
printa
}
}

Decision Tables

A Decision table represents conditions andréfspective actions to be taken to address them, in a
structured tabular format.

It is a powerful tool to debug and prevent errors. It helps group similar information into a single
table and then by combining tables it delivers easy and convenient denesking.

Creating Decision Table

To create the decision table, the developer must follow basic four steps:

A ldentify all possible conditions to be addressed

A Determine actions for all identified conditions

A Create Maximum possible rules

A Define action ér each rule
Decision Tables should be verified by emskrs and can lately be simplified by eliminating duplicate
rules and actions.

Page25of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Example

Let us take a simple example of eayday problem with our Internet connectivity. We begin by
identifying allproblems that can arise while starting the internet and their respective possible
solutions.

We list all possible problems under column conditions and the prospective actions under colum
Actions.

Conditions/Actions Rules

Shows Conacted N N N N Y Y Y Y

Ping is Working N N Y Y N N Y |Y
Conditions Opens Website Y N Y N Y N Y N

Check network cable X

Check internet router X X X X

Restart Web Browser X

Contac Service provider X X X X X X
Actions Do no action

Table : Decision Table In-house Internet Troubleshooting

Page26 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Entity -Relationship Model

Entity-Relationship model is a type of database model based on the notion of real waesl entit
and relationship among them. We can map real world scenario onto ER database model. ER
Model creates a set of entities with their attributes, a set of constraints and relation among them.

ER Model is best used for the conceptual design of databaddo8& can be represented as follows

attribute attribute attribute attribute

relationship

A Entity - An entity in ER Model is a real world being, which has some properties called
attributes Every attribute is defined by its corresponding set of values, acil@ain

For example, Consider a school detse. Here, a student is an entity. Student has various
attributes like name, id, age and class etc.

A Relationship - The logical association among entities is calledationship.
Relationships are mapped with entities in various ways. Mapping cardsaléfae
the number of associations between two entities.

Mapping cardinalities:

A onetoone

A one to many

A many to on& many to many

Data Dictionary

Data dictionary is the centralized collection of information about data. It stores meaning and
origin of data, its relationship with other data, data format for usage, etc. Data dictionary has
rigorous definitions of all maes in order to facilitate user and software designers.

Data dictionary is often referenced as rradi#a (data about data) repository. It is created along
with DFD (Data Flow Diagram) model of software program and is expected to be updated
whenever DFD ighanged or updated.

Page27 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Requirement of Data Dictionary

The data is referenced via data dictionary while designing and implementing software. Data dictional
removes any chances of ambiguity. It helps keeping work of programmers and designers synchroniz
while using same object reference everywhere in the program.

Data dictionary provides a way of documentation for the complete database system in one plac
Validation of DFD is carried out using data dictionary.

Contents

Data dictionary should contain orination about the following:

A Data Flow

A Data Structure
A Data Elements
A Data Stores

A Data Processing

Data Flow is described by means of DFDs as studied earlier and represented in algebraic form
described.

= Composed of

{} Repetition

0 Optiond

+ And

[/] or
Example

Address = House No + (Street / Area) + City + State

Course ID = Course Number + Course Name + Course Level + Course Grades

Data Elements

Data elements consist of Name and descriptions of Data and Control Items, Intéixidrnal data
stores etc. with the following details:
Page28of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Primary Name

Secondary Name (Alias)
Usecase (How and where to use)
Content Description (Notation etc.)

o o o o P>

Supplementary Information (preset values, constraints etc.)

Data Store

It stores thenformation from where the data enters into the system and exists out of the system.
The Data Store may include

A Fileso Internal to softwaren
External to software but on
the same machine.

o External to software and system, located on different machine
A Tableso Naming convention
o Indexing property
Data Processing

There are two types of Data Processing:

A Logical: As user sees it

A Physical: As software sees it

Page29 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASSHMIR

Section 5: Software Design Strategies

Software design is a process to conceptualize stifevare requirements into software
implementation. Software design takes the user requirements as challenges and tries to find
optimum solution. While the software is being conceptualized, a plan is chalked out to find
the best possible design for implemiag the intended solution.

There are multiple variants of software design. Let us study them briefly:

Structured Design

Structured design is a conceptualization of problem into severabvgahized elements of
solution. It is basically concerned Wwithe solution design. Benefit of structured design is, it
gives better understanding of how the problem is being solved. Structured design also makes
it simpler for designer to concentrate on the problem more accurately.

Structured designis mostlybasedh ‘ di vi de and conquer’ strate:
into several small problems and each small problem is individually solved until the whole
problem is solved.

The small pieces of problem are solved by means of solution modules. Structured design
emphasis that these modules be well organized in order to achieve precise solution.

These modules are arranged in hierarchy. They communicate with each other. A good
structured design always follows some rules for communication among multiple modules,
namely -

A Cohesion- grouping of all functionally related elements.

A Coupling - communication between different modules.
A good structured design has high cohesion and low coupling arrangements.

Function Oriented Design

In functionoriented design, the stem comprises of many smaller ssystems known as
functions. These functions are capable of performing significant task in the system. The
system is considered as top view of all functions.

Page30of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASSHMIR

Function oriented design inherits some properties of structdeseyn where divide and
conquer methodology is used.

This design mechanism divides the whole system into smaller functions, which provides
means of abstraction by concealing the information and their operation. These functional
modules can share informat among themselves by means of information passing and using
information available globally.

Another characteristic of functions is that when a program calls a function, the function
changes the state of the program, which sometimes is not acceptableebymodules.
Function oriented design works well where the system state does not matter and
program/functions work on input rather than on a state.

Design Process

A The whole system is seen as how data flows in the system by means of data flow
diagram.

A DFD depicts how functions change data and state of the entire system.

A The entire system is logically broken down into smaller units known as functions on
the basis of their operation in the system.

A Each function is then described at large.

Obiject Oriented Design

Object Oriented Design (OOD) works around the entities and their characteristics instead of
functions involved in the software system. This design strategies focuses on entities and its
characteristics. The whole concept of software solutisalves around the engaged entities.

Let us see the important concepts of Object Oriented Design:

A Objects - All entities involved in the solution design are known as objects. For
example, person, banks, company, and customers are treated as objectsntiyery
has some attributes associated to it and has some methods to perform on the attributes.

A Classes A class is a generalized description of an object. An object is an instance of
a class. Class defines all the attributes, which an object carahdveethods, which
defines the functionality of the object.

Page31of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

In the solution design, attributes are stored as variables and functionalities are defined
by means of methods or procedures.

A Encapsulation- In OOD, the attributes (data variables) and metltopsration on the
data) are bundled together is called encapsulation. Encapsulation not only bundles
important information of an object together, but also restricts access of the data and
methods from the outside world. This is called information hiding.

A Inheritance - OOD allows similar classes to stack up in hierarchical manner where the
lower or sukclasses can import, implement anelse allowed variables and methods
from their immediate super classes. This property of OOD is known as inheritance.
This makes it easier to define specific class and to create generalized classes from
specific ones.

A Polymorphism - OOD languages provide a mechanism where methods performing
similar tasks but vary in arguments, can be assigned same name. This is called
polymarphism, which allows a single interface performing tasks for different types.
Depending upon how the function is invoked, respective portion of the code gets
executed.

Design Process

Software design process can be perceived as series ediefield step. Though it varies
according to design approach (function oriented or object oriented, yet It may have the
following steps involved:

A A solution design is created from requirement or previous used system and/or system
sequence diagram.

A Objects are iderfied and grouped into classes on behalf of similarity in attribute
characteristics.

A Class hierarchy and relation among them is defined.

A Application framework is defined.

Page32of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASSHMIR

Software Design Approaches

Here are two generic approaches for softwasghing:

Top Down Design

We know that a system is composed of more than onsygibms and it contains a number
of components. Further, these systems and components may have their own set ef sub
systems and components, and creates hierarchicetusgrun the system.

Top-down design takes the whole software system as one entity and then decomposes it to
achieve more than one safgstem or component based on some characteristics. Each sub
system or component is then treated as a system and deeahfipdker. This process keeps

on running until the lowest level of system in the-timwvn hierarchy is achieved.

Top-down design starts with a generalized model of system and keeps on defining the more
specific part of it. When all the components are posed the whole system comes into
existence.

Top-down design is more suitable when the software solution needs to be designed from
scratch and specific details are unknown.

Bottom-up Design

The bottom up design model starts with most specific and basiponents. It proceeds with
composing higher level of components by using basic or lower level components. It keeps
creating higher level components until the desired system is not evolved as one single
component. With each higher level, the amount ofrab8on is increased.

Bottomrup strategy is more suitable when a system needs to be created from some existing
system, where the basic primitives can be used in the newer system.

Both, topdown and bottorup approaches are not practical individuallystéad, a good
combination of both is used.

User interface is the fromnd application view to which user interacts in order to use the
software. User can manipulate and control the software as well as hardware by means of user
interface. Today, user itface is found at almost every place where digital technology exists,
right from computers, mobile phones, cars, music players, airplanes, ships etc.

User interface is part of software and is designed in such a way that it is expected to provide
the userinsight of the software. Ul provides fundamental platform for huowmnputer
interaction.

Page33of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Ul can be graphical, testtased, audiwideo based, depending upon the underlying hardware
and software combination. Ul can be hardware or software or a combiaaboth.

The software becomes more popular if its user interface is:
A Attractive

Simple to use

Responsive in short time

Clear to understand

Consistent on all interfacing screens Ul is broadly divided into two categories:

Command Line Interface

Do e Do Do D>

Graphical User Interface

Section 6: Software User Interface Design

Command Line Interface (CLI)

CLI has been a great tool of interaction with computers until the video display monitors came
into existence. CLI is first choice of many technical users argt@anamers. It is the minimum
interface a software can provide to its users. CLI provides a command prompt, the place where
the user types the command and feeds to the system. The user needs to remember the syntax
of command and its use. Earlier CLI were mwbgrammed to handléhe user errors
effectively.

A command is a texbased reference to set of instructions, which are expected to be executed
by the system. There are methods like macros, scripts that make it easy for the user to operate.

CLI uses lesamount of computer resource as compared to GUI.

Page34 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN

CENTRAL UNIVERSIFYKASHMIR

CLI Elements

Command parameters

eoo T A CGiiw—bash—80x24 L
Pinaca:1ib gopals ls -al El
cotal 12264

drwxr-xr-x8 21 gopal otaff 714 Jul 2 2013 .

drwxr-xz-x8 14 gopal staff 476 Oct 24 09:20 ..

swer--g--§ 1 gopal staff 15264 Jul 2 2013 annotations-api.jar OUtpUt
sw-zr--z--8 1 gopal stafsf 54142 Jul 2 2013 catalina-ant.jar

~gw-z--g--§ 1 gopal staff 134215 Jul 2 2013 catalina-ha.jar

~-rw-r~~z-~§ 1 gopal ostaff 257520 Jul 2 2013 catalina-tribes.jar
~sw-r--z--§ 1 gopal ataff 1581311 Jul 2 2013 catalina.jar

~-gu-r~~g~~8 1 gopal otaff 1801636 Jul 2 2013 ecj-4.2.2.jar

-sw-r--z--§ 1 gopal staff 46085 Jul 2 2013 el-api.jar

~sw-g-~g--§ 1 gopal otaff 123241 Jul 2 2013 jasper-el.jar

~-sw-z~-z~-§ 1 gopal staff 599428 Jul 2 2013 jasper.jar

~gw-r--g--§ 1 gopal staff 88690 Jul 2 2013 jsp-api.jar

~-zw-r~-z-~8 1 gopal staff 177598 Jul 2 2013 gerviet-api.jar

~gw-g--gr--§ 1 gopal ostaff 6873 Jul 2 2013 tomcat-api.jar

~-sw-z~-z--§ 1 gopal staff 796527 Jul 2 2013 tomcat-coyote.jar

~sw-r--zr--§ 1 gopal ataff 235411 Jul 2 2013 temcat-dbep.jar

~-sw-r~~-r~-§ 1 gopal ostaff 77364 Jul 2 2013 tomcat-ilBn-es.jar

~zw-z--z--§ 1 gopal staff 48693 Jul 2 013 tomcat-il8n-fr.jax

- -2 1 gopal oataff 51678 Jul 2 2013 tomcat-il8n-ja.jar

-sw-r--z-—-§ 1 gopal staff 124006 Jul 2 2013 tomcat-jdbe.jar

-~-sw-g--r--8 1 gopal staff 23201 Jul 2 2013 tomcat-util.jar

Pinaca:lib gopal$

! EU"SOI'

Command Prompt

A text-based command line interface can have the following elements:

A Command Prompt- It is textbased notifier that is mostly shows the context in which
the user is working. It is geneeak by the software system.

A Cursor - It is a small horizontal line or a vertical bar of the height of line, to represent
position of character while typing. Cursor is mostly found in blinking state. It moves
as the user writes or deletes something.

A Command - A command is an executable instruction. It may have one or more
parameters. Output on command execution is shown inline on the screen. When output
is produced, command prompt is displayed on the next line.

Graphical User Interface

Graphical User Iirface (GUI) provides the user graphical means to interact with the system.
GUI can be combination of both hardware and software. Using GUI, user interprets the
software.

Page35of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Typically, GUI is more resource consuming than that of CLI. With advancing teclynttheg
programmers and designers create complex GUI designs that work with more efficiency,
accuracy, and speed.

GUI Elements

GUI provides a set of components to interact with software or hardware.

Every graphical component provides a way to work wita system. A GUI system has
following elements such as:

AppCleaner Art Text 2 Lite
12 Music i 17
) Pictures
Automator Calculator Calendar

DEVICES
& Pinaca / 2 OSX » 3] Apphications

Window - An area where contents of application are displayed. Contents in a window can be
displayed in the form of icons or lists, if the window represents file structure. It is easier for a
userto navigate in the file system in an exploring window. Windows can be minimized, resized
or maximized to the size of screen. They can be moved anywhere on the screen. A window
may contain another window of the same application, called child window.

A Tabs- If an application allows executing multiple instances of itself, they appear on the
screen as separate windowsabbed Document Interface has come up to open
multiple documents in the same window. This interface also helps in viewing preference
panel in @plication. All modern webbrowsers use this feature.

A Menu - Menu is an array of standard commands, grouped together and placed at a
visible place (usually top) inside the application window. The menu can be programmed
to appear or hide on mouse clicks.

Page36 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A Icon- Anicon is small picture representing an associated application. When these icons
are clicked or double clicked, the application window is opened. Icon displays
application and programs installed on a system in the form of small pictures.

A Cursor - Interacting devices such as mouse, touch pad, digital pen are represented in
GUI as cursors. On screen cursor follows the instructions from hardware in almost real
time. Cursors are also named pointers in GUI systems. They are used to select menus,
windowsand other application features.

Application specific GUI components
A GUI of an application contains one or more of the listed GUI elements:

A Application Window - Most application windows uses the constructs supplied by
operating systems but many useittmvn customer created windows to contain the
contents of application.

A Dialogue Box- It is a child window that contains message for the user and request for
some action to be taken. For Example: Application generate a dialogue to get
confirmation from ger to delete a file.

Aa00 Untitled — {cnc

- Do you want to save the changes made to the
2 I document “Untithed™?
= Your changes will Be lost f you @ant save them
Save As: | Untitind b

Tags:
Where: Ll Desktop

Don't Save Cancal | Save |

A Text-Box - Provides an area for user to type and enterliaged data.

A Buttons - They imitate real life buttons and are used to submit inputs to the software.

Page37 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Radio Buttons

Time options: () Digital () Analog
|| Display the time with seconds

| | Flash the time separators
| | Use a 24-hour clock

Check Box
(¥ Show AM/PM

Date options: (¥ Show the day of the week
¥ Show date

A Radio-button - Displays available options for selection. Only aen be selected
among all offered.

A Check-box - Functions similar to lisbox. When an option is selected, the box is
marked as checked. Multiple options represented by check boxes can be selected.

A List-box - Provides list of available items for selectidMlore than one item can be
selected.

First day of week&811,1-E1

. Monday ‘
Calendar 1,e5day :]
. | Wednesday
Time formal; Thursday |
List sort order Friday _J
|
Saturday

Sunday, 5 January zurs 7IUSIUT amIST T
Other impressive GUI components are:
A Sliders
A Combacbox
A Datagrid
A Drop-down list

Page38of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

User Interface Design Activities

There are a number of activities performed for designing user interface. The process of GUI
design and implementation is alike SDLC. Any model can be used for GUI implementation
among Waterfall, Iterative or Spiral Model.

A model used for GUI design and development should fulfill these GUI specific steps.

GUI Requirement
Specification

GuUl
Task Analysis

Gul
Design &
Implementation

A GUI Requirement Gathering - The degjners may like to have list of all functional
and norfunctional requirements of GUI. This can be taken from user and their existing
software solution.

A User Analysis- The designer studies who is going to use the software GUI. The target
audience matteras the design details change according to the knowledge and
competency level of the user. If user is technical savvy, advanced and complex GUI can
be incorporated. For a novice user, more information is included ostdhofrsoftware.

A Task Analysis - Desgners have to analyze what task is to be done by the software
solution. Here in GUI, it does not matter how it will be done. Tasks can be represented
in hierarchical manner taking one major task and dividing it further into smaller sub
tasks. Tasks providgoals for GUI presentation. Flow of information among-tasks
determines the flow of GUI contents in the software.

Page39 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A GUI Design and implementation - Designers after having information about
requirements, tasks and user environment, design the GUI atememngs into code
and embed the GUI with working or dummy software in the background. It is then self
tested by the developers.

Testing - GUI testing can be done in various ways. Organization can haveuse
inspection, direct involvement of users ametease of beta version are few of them.
Testing may include usability, compatibility, user acceptance etc.

GUI Implementation Tools

There are several tools available using which the designers can create entire GUI on a mouse
click. Some tools can be enduied into the software environment (IDE).

GUI implementation tools provide powerful array of GUI controls. For software customization,
designers can change the code accordingly.

There are different segments of GUI tools according to their differentnasgla@form.

Example

Mobile GUI, Computer GUI, Touclcreen GUI etc. Here is a list of few tools which come
handy to build GUI:
A FLUID
Applnventor (Android)
LucidChart
Wavemaker
Visual Studio

o o Do

User Interface Golden rules

The following rules are meioined to be the golden rules for GUI design, described by
Shneiderman and Plaisant in their book (Designing the User Interface).

A Strive for consistency- Consistent sequences of actions should be required in similar
situations. Identical terminology shoube used in prompts, menus, and help screens.
Consistent commands should be employed throughout.

Page40of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASSHMIR

A Enable frequent users to use shoftuts-The user’' s desire to re
interactions increases with the frequency of use. Abbreviations, furkety®) hidden
commands, and macro facilities are very helpful to an expert user.

Offer informative feedback - For every operator action, there should be some system
feedback. For frequent and minor actions, the response must be modest, while for
infrequent and major actions, the response must be more substantial.

A Design dialog to yield closure Sequences of actions should be organized into groups
with a beginning, middle, and end. The informative feedback at the completion of a
group of actions gives theperators the satisfaction of accomplishment, a sense of
relief, the signal to drop contingency plans and options from their minds, and this
indicates that the way ahead is clear to prepare for the next group of actions.

A Offer simple error handling - As much as possible, design the system so the user will
not make a serious error. If an error is made, the system should be able to detect it and
offer simple, comprehensible mechanisms for handling the error.

A Permit easy reversal of actions This feature elieves anxiety, since the user knows
that errors can be undone. Easy reversal of actions encourages exploration of unfamiliar
options. The units of reversibility may be a single action, a data entry, or a complete
group of actionsS

A Support internal locus of control - Experienced operators strongly desire the sense
that they are in charge of the system and that the system responds to their actions.
Design the system to make users the initiators of actions rather than the responders.

A Reduce shortterm memory load - The limitation of human information processing in
shortterm memory requires the displays to be kept simple, multiple page displays to be
consolidated, windownotion frequency be reduced, and sufficient training time be
allotted for codes, mnemas, and sequences of actions.

Page4lof 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Section 7: Software implementation

In this chapter, we will study about programming methods, documentation and challenges in softw
implementation.

Structured Programming

In the process of coding, the lines of codegkmultiplying, thus, size of the software increases.
Gradually, it becomes next to impossible to remember the flow of program. If one forgets how
software and its underlying programs, files, procedures are constructed, it then becomes very
difficult to share, debug, and modify the program. The solution to this is structured
programming. It encourages the developer to use subroutines and loops instead of using simple
jumps in the code, thereby bringing clarity in the code and improving its efficiencyusédict
programming also helps programmer to reduce coding time and organize code properly.

Structured programming states how the program shall be coded. It uses three main concepts:

1. Top-down analysis- A software is always made to perform some rationakw®his
rational work is known as problem in the software parlance. Thus it is very important
that we understand how to solve the problem. Undedtmmn analysis, the problem is
broken down into small pieces where each one has some significance. Edem psob
individually solved and steps are clearly stated about how to solve the problem.

2. Modular Programming - While programming, the code is broken down into smaller
group of instructions. These groups are known as modules, subprograms, or
subroutines. Mdular programming based on the understanding efltypn analysis.
It di scourages jumps using ‘goto’ stat e mge
program flow nontraceable. Jumps are prohibited and modular format is encouraged in
structured programming

3. Structured Coding - In reference with toglown analysis, structured coding sub
divides the modules into further smaller units of code in the order of their execution.
Structured programming uses control structure, which controls the flow of the program,
whereas structured coding uses control structure to organize its instructions in definable
patterns.

Functional Programming

Functional programming is style of programming language, which uses the concepts of
mathematical functions. A function in mathdrms should always produce the same result on
receiving the same argument. In procedural languages, the flow of the program runs through
procedures, i.e. the control of program is transferred to the called procedure. While control
flow is transferring fronone procedure to another, the program changes its state.

Paged2 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

In procedural programming, it is possible for a procedure to produce different results when it
is called with the same argument, as the program itself can be in different state while calling
it. This is a property as well as a drawback of procedural programming, in which the sequence
or timing of the procedure execution becomes important.

Functional programming provides means of computation as mathematical functions, which
produces results irrespgae of program state. This makes it possible to predict the behavior
of the program.

Functional programming uses the following concepts:

First class and Highorder functions - These functions have capability to accept another function as
argument or thereturn other functions as results.

A Pure functions - These functions do not include destructive updates, that is, they do
not affect any 1/0 or memory and if they are not in use, they can easily be removed
without hampering the rest of the program.

A Recusion - Recursion is a programming technique where a function calls itself and
repeats the program code in it unless somalpfimed condition matches. Recursion is
the way of creating loops in functional programming.

A Strict evaluation - It is a method bevaluating the expression passed to a function as
an argument. Functional programming has two types of evaluation methods, strict
(eager) or nostrict (lazy). Strict evaluation always evaluates the expression before
invoking the function. Nosstrict evduation does not evaluate the expression unless it
IS needed.

A e-calculus - Mo s t functional p r o gaaleulmsmas rnthgir typa n g u a ¢
S y st eemrpsessions are executed by evaluating them as they occur.

Common Lisp, Scala, Haskell, Erlang, artldfe some examples of functional programming language

Programming style

Programming style is set of coding rules followed by all the programmers to write the code.
When multiple programmers work on the same software project, they frequently need to wo
with the program code written by some other developer. This becomes tedious or at times
impossible, if all developers do not follow some standard programming style to code the
program.

An appropriate programming style includes using function and \‘anmabnes relevant to the
intended task, using wefllaced indentation, commenting code for the convenience of reader
and overall presentation of code. This makes the program code readable and understandable
by all, which in turn makes debugging and eradvisg easier. Also, proper coding style helps

ease the documentation and updation.

Page43of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Coding Guidelines

Practice of coding style varies with organizations, operating systems and language of coding itself.

The following coding elements may be defined urmeling guidelines of an organization:

A

Naming conventions- This section defines how to name functions, variables, constants and
global variables.

Indenting - This is the space left at the beginning of line, usuaiBy\ghitespace or single
tab.

Whitespace- It is generally omitted at the end of line.

Operators - Defines the rules of writing mathematical, assignment and logical operators. For
exampl e, assignment operator ‘=" should h

Control Structures - Therules of writing ifthenelse, casswitch, whileuntil and for control
flow statements solely and in nested fashion.

Line length and wrapping - Defines how many characters should be there in one line, mostly
a line is 80 characters long. Wrapping defihew a line should be wrapped, if is too long.

Functions - This defines how functions should be declared and invoked, with and without
parameters.

Variables - This mentions how variables of different data types are declared and defined.

Comments- Thisis one of the important coding components, as the comments included in
the code describe what the code actually does and all other associated descriptions. Thi
section also helps creating help documentations for other developers.

Software Documentation

Software documentation is an important part of software process. A well written document
provides a great tool and means of information repository necessary to know about software
process. Software documentation also provides information about how teyseduct.

A well-maintained documentation should involve the following documents:

A

Requirement documentation- This documentation works as key tool for software
designer, developer, and the test team to carry out their respective tasks. This document
contains all the functional, nefunctional and behavioral description of the intended
software.

Source of this document can be previously stored data about the software, already
running software at the <client reseaech.d, cl

Paged4 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Generally it is stored in the form of spreadsheet or word processing document with the
high-end software management team.

This documentation works as foundation for the software to be developed and is majorly
used in verification and validatiophases. Most tesiases are built directly from
requirement documentation.

A Software Design documentation These documentations contain all the necessary
information, which are needed to build the software. It contéansligh-level software
architectue, (b) Software design detail§;) Data flow diagramgid) Database design

These documents work as repository for developers to implement the software. Though
these documents do not give any details on how to code the program, they give all
necessary imfrmation that is required for coding and implementation.

A Technical documentation- These documentations are maintained by the developers
and actual coders. These documents, as a whole, represent information about the code.
While writing the code, the progmmers also mention objective of the code, who wrote
it, where will it be required, what it does and how it does, what other resources the code
uses, etc.

The technical documentation increases the understanding between various
programmers working on treame code. It enhancesuge capability of the code. It
makes debugging easy and traceable.

There are various automated tools available and some comes with the programming
language itself. For example java comes JavaDoc tool to generate technical
documetation of code.

A User documentation- This documentation is different from all the above explained.
All previous documentations are maintained to provide information about the software
and its development process. But user documentation explains how ftharso
product should work and how it should be used to get the desired results.

These documentations may include, software installation procedures, howto guides,
userguides, uninstallation method and special references to get more information like
license updation etc.

Software Implementation Challenges

There are some challenges faced by the development team while implementing the software. Some
of them are mentioned below:

A Codereuse- Programming interfaces of presatdy languages are very soplaated
and are equipped huge library functions. Still, to bring the cost down of end product,

Page45of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

the organization management prefers tose the code, which was created earlier for
some other software. There are huge issues faced by programmers for cditgpatibi
checks and deciding how much code tause.

A Version Management- Every time a new software is issued to the customer,
developers have to maintain version and configuration related documentation. This
documentation needs to be highly accurate antade on time.

A Target-Host - The software program, which is being developed in the organization,
needs to be designed for host machines at the customers end.

But at times, it is impossible to design a software that works on the target machines.

Paged6 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Sectin 8: Software Teasting Overview

Software Testing is evaluation of the software against requirements gathered from users and syste
specifications. Testing is conducted at the phase level in software development life cycle or at mod
level in program codeSoftware testing comprises of Validation and Verification.

Software Validation

Validation is process of examining whether or not the software satisfies the user requirements.
It is carried out at the end of the SDLC. If the software matches requirefoemthich it was
made, it is validated.

A Validation ensures the product under development is as per the user requirements.

A Validation answers the questien'Are we developing the product which attempts all that us
needs from this software ?".

A Validation emphasizes on user requirements.

Software Verification

Verification is the process of confirming if the software is meeting the business requirements,
and is developed adhering to the proper specifications and methodologies.

A Verification ensures thproduct being developed is according to design specifications.

A Verification answers the questieriAre we developing this product by firmly following all
design specifications ?"

A Verifications concentrates on the design and system specifications.
Target of the test are

A Errors - These are actual coding mistakes made by developers. In addition, there is a differe
in output of software and desired output, is considered as an error.

A Fault - When error exists fault occurs. A fault, also known as@ isua result of an error which
can cause system to fail.

A Failure -failure is said to be the inability of the system to perform the desired task. Failure occt
when fault exists in the system.

Manual Vs Automated Testing

Testing can either be done meally or using an automated testing tool:

Paged7 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A Manual - This testing is performed without taking help of automated testing tools. The
software tester prepares test cases for different sections and levels of the code, executes
the tests and reports the redalthe manager.

Manual testing is time and resource consuming. The tester needs to confirm whether or
not right test cases are used. Major portion of testing involves manual testing.

A Automated This testing is a testing procedure done with aid of autaheasting tools.
The limitations with manual testing can be overcome using automated test tools.

A test needs to check if a webpage can be opened in Internet Explorer. This can be easily done
with manual testing. But to check if the wsérver can take éhload of 1 million users, it is
quite impossible to test manually.

There are software and hardware tools which helps tester in conducting load testing, stress te:
regression testing.

Testing Approaches

Tests can be conducted based on two apprsache

1. Functionality testing
2. Implementation testing

When functionality is being tested without taking the actual implementation in concern it is
known as blaclbox testing. The other side is known as wiitex testing where not only
functionality is testedbut the way it is implemented is also analyzed.

Exhaustive tests are the besisired method for a perfect testing. Every single possible value in tf
range of the input and output values is tested. It is not possible to test each and every valweiiid real
scenario if the range of values is large.

Black-box testing

It is carried out to test functionality of 1
tester in this case, has a set of input values and respective desired results. Orgpnpudin

i f the output matches with the desired resu
otherwise.

input output

Page48of 57

Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

In this testing method, the design and structure of the code are not known to the tester, and tes
engineers and end users conduct &g on the software.

Black-box testing techniques:

A

Equivalence class The input is divided into similar classes. If one element of a class
passes the test, it is assumed that all the class is passed.

Boundary values- The input is divided into highemd lower end values. If these
values pass the test, it is assumed that all values in between may pass too.

Causeeffect graphing - In both previous methods, only one input value at a time is
tested. Cause (inpud Effect (output) is a testing techniquéngre combinations of
input values are tested in a systematic way.

Pair-wise Testing- The behavior of software depends on multiple parameters. In
pairwise testing, the multiple parameters are tested pairwise for their different values.

State-based testirg - The system changes state on provision of input.
These systems are tested based on their states and input.

White-box testing

It is conducted to test program and its implementation, in order to improve code efficiency or struct

isalsoknownas St ruct ur al

testing.

input output

-> ->

In this testing method, the design and structure of the code are known to the tester. Programmers o
code conduct this test on the code.

The below are some Whitox testing techniques:

A

Control -flow testing - The purpose ahe controiflow testing to set up test cases which
covers all statements and branch conditions. The branch conditions are tested for both
being true and false, so that all statements can be covered.

Data-flow testing - This testing technique emphasisdover all the data variables
included in the program. It tests where the variables were declared and defined and
where they were used or changed.

Page49of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

Testing Levels

Testing itself may be defined at various levels of SDLC. The testing process runs parallel t
software development. Before jumping on the next stage, a stage is tested, validated and
verified.

Testing separately is done just to make sure that there are no hidden bugs or issues left in the softw
Software is tested on various levels

Unit Testing

While coding, the programmer performs some tests on that unit of program to know if it is error
free. Testing is performed under whiiex testing approach. Unit testing helps developers
decide that individual units of the program are working asgmgrirement and are error free.

Integration Testing

Even if the units of software are working fine individually, there is a need to find out if the
units if integrated together would also work without errors. For example, argument passing and
data updaon etc.

System Testing

The software is compiled as product and then it is tested as a whole. This can be accomplished us
or more of the following tests:

A Functionality testing - Tests all functionalities of the software against the requirement.

A Performance testing - This test proves how efficient the software is. It tests the
effectiveness and average time taken by the software to do desired task. Performance
testing is done by means of load testing and stress testing where the software deput un
high user and data load under various environment conditions.

A Security & Portability - These tests are done when the software is meant to work on
various platforms and accessed by number of persons.

Acceptance Testing

When the software is ready tard over to the customer it has to go through last phase of
testing where it is tested for usateraction and response. This is important because even if
the software matches all user requirements and if user does not like the way it appears or works,
it may be rejected.

A Alpha testing - The team of developer themselves perform alpha testing by using the
system as if it is being used in work environment. They try to find out how user would
react to some action in software and how the system should respiopadts.

Pageb0of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

A Beta testing- After the software is tested internally, it is handed over to the users to

use it under their production environment only for testing purpose. This is not as yet the

delivered product. Developers expect that users at thiswsthgeng minute problems,
which were skipped to attend.

Regression Testing

Whenever a software product is updated with new code, feature or functionality, it is tested

thoroughly to detect if there is any negative impact of the added code.
This is knavn as regression testing.

Testing Documentation

Testing documents are prepared at different stages
Before Testing
Testing starts with test cases generation. Following documents are needed for reference

A SRS document Functional Requirements docunte

A Test Policy document- This describes how far testing should take place before
releasing the product.

A Test Strategy document- This mentions detail aspects of test team, responsibility
matrix and rights/responsibility of test manager and test engineer

A Traceability Matrix document - This is SDLC document, which is related to

requirement gathering process. As new requirements come, they are added to this
matrix. These matrices help testers know the source of requirement. They can be traced

forward andbackward.

While Being Tested

The following documents may be required while testing is started and is being done:

A Test Case document This document contains list of tests required to be conducted. It

includes Unit test plan, Integration test plan, Systest plan and Acceptance test plan.

A Test description- This document is a detailed description of all test cases and procedures

to execute them.
A Test case report This document contains test case report as a result of the test.

Test logs- This docunent contains test logs for every test case report.

Pageblof 57

Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[SYSTEM ANALYSIS AND DESIGN
CENTRAL UNIVERSIFYKASHMIR

After Testing

The following documents may be generated after testing :

0 Test summary- This test summary is collective analysis of all test reports and logs. It
summarizes and concludes if the software is ready to be launched. The software is
released under version control system if it is ready to launch.

Testing vs. Quality Control & Assurance and Audit

We need to understand that software testing is different from software quality assurance, software
control and software auditing.

A Software quality assurance- These are software development process monitoring
means by which it is assured that all the measures are taken as per the standards of
organization. This monitoring is done to make sure that proper software development
methods were followed.

A Software quality control - This is a system to maintain the quabfysoftware product.
It may include functional and nefanctional aspects of software product, which
enhance the goodwill of the organization. This system makes sure that the customer is
receiving quality product for their requirement and the produatdert e d as * f it

A Software audit- This is a review of procedure used by the organization to develop the
software. A team of auditors, independent of development team examines the software
process, procedure, requirements and other aspects of Sbe@urpose of software
audit is to check that software and its development process, both conform standards,
rules and regulations.

Pageb2 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

| OPERATING SYSTEMS
CENTRAL UNIVERSIFYKASHMIR Unit Il

Section 9 : Software Maintainance Overview

Software maintenance is widely accepted part of SDLC now a days. It stankigiier a
modifications and updations done after the delivery of software product. There are
number of reasons, why modifications are required, some of them are briefly mentioned
below:

A Market Conditions - Policies, which changes over the time, such as itaxat
and newly introduced constraints like, how to maintain bookkeeping, may
trigger need for modification.

A Client Requirements- Over the time, customer may ask for new features or
functions in the software.

A Host Modifications - If any of the hardware aior platform (such as operating
system) of the target host changes, software changes are needed to keep
adaptability.

A Organization Changes If there is any business level change at client end, such
as reduction of organization strength, acquiring amatbmpany, organization
venturing into new business, need to modify in the original software may arise.

Types of maintenance

In a software lifetime, type of maintenance may vary based on its nature. It may be just
a routine maintenance tasks as somedisicovered by some user or it may be a large
event in itself based on maintenance size or nature. Following are some types of
maintenance based on their characteristics:

A Corrective Maintenance- This includes modifications and updations done in
order to correct or fix problems, which are either discovered by user or
concluded by usearror reports.

A Adaptive Maintenance- This includes modifications and updations applied to
keep the software product#p date and tuned to the ever changing world of
techrology and business environment.

A Perfective Maintenance- This includes modifications and updates done in
order to keep the software usable over long period of time. It includes new
features, new user requirements for refining the software and improve its
reliability and performance.

Page 53 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

[OPERATING SYSTEMS
CENTRAL UNIVERSIFKASHMIR Unit 1

A Preventive Maintenance - This includes modifications and updations to
prevent future problems of the software. It aims to attend problems, which are
not significant at this moment but may cause serious issues in future.

Cost of Maintenance

Reports suggest that the cost of maintenance is high. A study on estimating software

maintenance found that the cost of maintenance is as high as 67% of the cost of entire
software process cycle.

Reqguirement

Designing

Implementation

Testing

Maintenance

On an average, the cost of software maiatee is more than 50% of all SDLC phases.
There are various factors, which trigger maintenance cost go high, such as:

Realworld factors affecting Maintenance Cost

A The standard age of any software is considered up to 10 to 15 years.

A Older softwares, wihh were meant to work on slow machines with less memory and

storage capacity cannot keep themselves challenging against newly coming enhanced
softwares on modern hardware.

A As technology advances, it becomes costly to maintain old software.

A Most maintenace engineers are newbie and use trial and error method to rectify
problem.

Page 54 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

| OPERATING SYSTEMS
CENTRAL UNIVERSIFKASHMIR Unit 1

A Often, changes made can easily hurt the original structure of the software, making it hard

A

for any subsequent changes.

Changes are often left undocumented which may cause mdtietsan future.

Software-end factors affecting Maintenance Cost

A

A
A
A

Structure of Software Program
Programming Language
Dependence on external environment

Staff reliability and availability

Maintenance Activities

IEEE provides a framework for sequehtmaintenance process activities. It can be
used in iterative manner and can be extended so that customized items and processes
can be included.

Identification
* & Tracing

Maintenance Implementation
Activities

Acceptance
Testing

System Testing

These activities go hard-hand with each of the following phase:

A

Identification & Tracing - It involvesactivities pertaining to identification of
requirement of modification or maintenance. It is generated by user or system
may itself report via logs or error messages.Here, the maintenance type is
classified also.

Page 55 of 57

Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

| OPERATING SYSTEMS
CENTRAL UNIVERSIFKASHMIR Unit Il

A Analysis - The modification is analyzeaf its impact on the system including
safety and security implications. If probable impact is severe, alternative
solution is looked for. A set of required modifications is then materialized into
requirement specifications. The cost of modification/maser is analyzed
and estimation is concluded.

A Design- New modules, which need to be replaced or modified, are designed
against requirement specifications set in the previous stage. Test cases are
created for validation and verification.

A Implementation - The new modules are coded with the help of structured
design created in the design step.Every programmer is expected to do unit
testing in parallel.

A System Testing- Integration testing is done among newly created modules.
Integration testing is also ¢&d out between new modules and the system.
Finally the system is tested as a whole, following regressive testing procedures.

A Acceptance Testing- After testing the system internally, it is tested for
acceptance with the help of users. If at this stader complaints some issues
they are addressed or noted to address in next iteration.

A Delivery - After acceptance test, the system is deployed all over the organization
either by small update package or fresh installation of the system. The final
testingtakes place at client end after the software is delivered.

Training facility is provided if required, in addition to the hard copy of user manual.

A Maintenance management Configuration management is an essential part of
system maintenance. It is aidedhwersion control tools to control versions,
semtiversion or patch management.

END

Page 56 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

| OPERATING SYSTEMS
CENTRAL UNIVERSIFKASHMIR Unit Il

References & Bibliography

1.Jef fery. Hoffer, Modern Systen
Person Edu., New Delhi.

2. Coad,Peter and Edward Yourdon. Object- Oriented Analysis..
Englewood cliff, New jersey, Yourdon Press.

3. A Practitioners Approach Roger S. Pressman, Mcgraw

Hill, International Education.

Page 57 of 57
Copyright © 2020 by DIT Central University of Kashmir. All rights reserved

