
CHARACTER CODES

Compiled By: Afaq Alam Khan



Character Codes

 Unless you know the encoding 
scheme, there is no way that 
you can decode the data.

  Computer memory location 
merely stores a binary pattern. 
It is entirely up to you, as the 
programmer, to decide on how 
these patterns are to 
be interpreted.

 The 8-bit binary 
pattern "0100 0001" can be 
interpreted as an unsigned 
integer 65, or an ASCII 
character 'A‘ Egyptian hieroglyphs



Introduction

 Numerical symbols (0 to 9), Alphabets (A to Z, a to z) and 
special characters (#, &, …….  ) are represented by 
codes using binary digits 0 and 1, arranged according to 
the rules of specific scheme.

 Schemes/ Types of codes
 BCD (Binary coded decimal)
 Excess-3 Code
 Gray Code
 Alphanumeric Code

 ASCII
 EBCDIC
 Unicode



BCD (Binary Coded Decimal)

 Four-bit code used to represents one of the ten decimal digits(Symbols) from 0 to 9.
 The following are the 4-bit binary representation of decimal values (Symbols):

0 = 0000
1 = 0001
2 = 0010
3 = 0011
4 = 0100
5 = 0101
6 = 0110
7 = 0111
8 = 1000
9 = 1001

 Remaining combinations 1010, 1011, 1100, 1101, 1110, 1111 are not used.
 Each bit position has a weight associated with it (weighted code). Weights are: 8, 4, 

2, and 1 from MSB to LSB (called 8-4-2-1 code)
 Example:  (37)10 is represented as 0011 0111 using BCD code, rather than 

(100101)2 in straight binary code.



BCD (Binary Coded Decimal)

 Example

Decimal Number BCD Code Binary Equal

5 0101 0101

9 1001 1001

58 0101  1000 111010

170 0001  0111  0000 10101010



Excess-3 Code (XS-3)

 Four bit code
 Excess-3 code is derived from 

8421(BCD) code by adding 
3(0011) to all code groups.

 Example - decimal 2 is coded as 
0010 + 0011 = 0101 as Excess-
3 code.

 It not weighted code.
 Its self-complimenting code, means 

1's complement of the coded 
number yields 9's complement of 
the number itself.

Decimal 
Number

Excess-3 
Code

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100



Excess-3 Code (XS-3)

 Example

 Self complementing property

Decimal BCD Excess-3

8 1000 8 + 3 = 11 1011

13 0001  0011 1 + 3 = 4  0100 , 3 + 3 = 6  0110
0100 0110

562 0101 0110 0010 5+3 =8  1000, 6+3=91001, 2+3=5 0101
100010010101

Decimal Excess -3

2 0101

9’s Complement 9-2 = 7 I’s Complement  = 1010

7 1010



Excess-3 Code (XS-3)

 Exercise 1: Encode the following decimal numbers 
into BCD and excess-3 codes
 A) 1548
 B) 7896

 Exercise 2: Decode the following Excess-3 numbers
 A) 01110100
 B) 100001010110



Gray Code

 It is the non-weighted code and it is not 
arithmetic codes. That means there are no 
specific weights assigned to the bit 
position. It has a very special feature 
that, only one bit will change each time 
the decimal number is incremented 

 The gray code is a cyclic code

 the Gray code exhibits only a single bit 
change from one code word to the next in 
sequence. This property is important in 
many applications, such as shaft position 
encoders.

Decimal Number Gray Code

0 0000

1 0001

2 0011

3 0010

4 0110

5 0111

6 0101

7 0100

8 1100

9 1101

10 1111

11 1110

12 1010

13 1011

14 1001

15 1000



Gray Code

 Example: Show the Gray code of 22
e.g., (22)10  = (  ? ) Gray

Solution:
Step 1: (22)10  = (  10110 ) 2 = (  ? ) Gray

Step 2: The MSB in the Gray code is the same as corresponding MSB in 
the binary number.

Step 3: Going from left to right, add each adjacent pair of binary 
code bits to get the next Gray code bit, discarding carries.

(22)10  = (  10110 ) 2 = (  11101 ) Gray



Gray Code

 Example: Convert the Gray code 11011 to Binary and then to 
decimal.

(11011)Gray  = (   ?  )2
Solution:
Step 1: The MSB in the binary code is the same as the corresponding bit 

in the Gray code.
Step 2: Add each binary code bit generated to the Gray code bit in 

the next adjacent position, discarding carries.

(11011)Gray  = ( 10010 )2  = 18 



Gray Code

 Exercise 3 :Find the Gray equivalent of the following 
binary numbers
 A) 100010111
 B) 111010110

 Exercise 4: Find the binary equivalent of the following 
gray codes
 A) 101010101

 B) 10010101111



Alphanumeric codes

 Represent numbers and alphabetic characters. Also 
represent other characters such as symbols and 
various instructions necessary for conveying 
information. 

 Most Common
 ASCII
 EBSDIC
 UniCode



ASCII

 American Standard Code for Information 
Interchange

 ASCII is originally a 7-bit code. It has been 
extended to 8-bit to better utilize the 8-bit 
computer memory organization. 

 Code numbers 32D (20H) to 126D (7EH) are 
printable (displayable) characters as tabulated 
(arranged in hexadecimal and decimal) as follows

 Code number 32D (20H) is 
the blank or space character.



ASCII – Arranged in Hexadecimal 



ASCII – Arranged in Decimal



Code numbers 0D (00H) to 31D (1FH), and 127D (7FH) are 
special control characters, which are non-printable (non-
displayable)



EBCDIC

 EBCDIC (Extended Binary Coded Decimal 
Interchange Code)

Self study



 Unicode (aka ISO/IEC 10646 Universal 
Character Set)

 Before Unicode, no single character encoding scheme could represent characters in 
all languages.

 For example, western european uses several encoding schemes. single language like 
Chinese has a few encoding schemes. Many encoding schemes are in conflict of each 
other, i.e., the same code number is assigned to different characters.

 Unicode aims to provide a standard character encoding scheme, which is universal, 
efficient, uniform and unambiguous. Unicode standard is maintained by a non-profit 
organization called the Unicode Consortium ( www.unicode.org). Unicode is an 
ISO/IEC standard 10646. 

 Unicode is backward compatible with ASCII etc. That is, the first 128 characters are 
the same as US-ASCII

 Unicode originally uses 16 bits (called UCS-2 or Unicode Character Set - 2 byte), 
which can represent up to 65,536 characters. It has since been expanded to more 
than 16 bits, currently stands at 21 bits. covering all current and ancient historical 
scripts.

http://www.unicode.org/


Unicode (aka ISO/IEC 10646 
Universal Character Set)
 The original 16-bit range of U+0000H to U+FFFFH (65536 

characters) is known as Basic Multilingual Plane (BMP), covering all 
the major languages in use currently. The characters outside BMP are 
called Supplementary Characters, which are not frequently-used.

 Unicode has two encoding schemes:
 UCS-2 (Universal Character Set - 2 Byte): Uses 2 bytes (16 bits), 

covering 65,536 characters in the BMP. BMP is sufficient for most of 
the applications. UCS-2 is now obsolete. [UTF-16]

 UCS-4 (Universal Character Set - 4 Byte): Uses 4 bytes (32 bits), 
covering BMP and the supplementary characters. 
[UTF-32]



Thank you



Egyptian hieroglyphs

 Egyptian hieroglyphs were used by the ancient Egyptians since 
4000BC. Unfortunately, since 500AD, no one could longer read the 
ancient Egyptian hieroglyphs, until the re-discovery of the Rosette 
Stone in 1799 by Napoleon's troop (during Napoleon's Egyptian 
invasion) near the town of Rashid (Rosetta) in the Nile Delta.

 The Rosetta Stone is inscribed with a decree in 196BC on behalf of 
King Ptolemy V. The decree appears in three scripts: the upper text 
is Ancient Egyptian hieroglyphs, the middle portion Demotic script, 
and the lowest Ancient Greek. Because it presents essentially the 
same text in all three scripts, and Ancient Greek could still be 
understood, it provided the key to the decipherment of the Egyptian 
hieroglyphs.

 The moral of the story is unless you know the encoding scheme, there 
is no way that you can decode the data.


