Differential Geometry

MMT-C204

Module-3

Fundamental Theorem of Surfaces in \mathbb{R}^3

G. M. Sofi
Assistant Professor
Department of Mathematics
Central University of Kashmir
3. Fundamental Theorem of Surfaces in \mathbb{R}^3

3.1. Frobenius Theorem.

Let \mathcal{O} be an open subset of \mathbb{R}^2, $f, g : \mathcal{O} \to \mathbb{R}$ smooth maps, $(x_0, y_0) \in \mathcal{O}$, and $c_0 \in \mathbb{R}$. Then the initial value problem for the following ODE system,

\[
\begin{align*}
\frac{\partial u}{\partial x} &= f(x, y), \\
\frac{\partial u}{\partial y} &= g(x, y), \\
u(x_0, y_0) &= c_0,
\end{align*}
\]

has a smooth solution defined in some disk centered at (x_0, y_0) for any given $(x_0, y_0) \in \mathcal{O}$ if and only if f, g satisfy the compatibility condition

\[
\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}
\]

in \mathcal{O}. Moreover, we can use integration to find the solution as follows: Suppose $u(x, y)$ is a solution, then the Fundamental Theorem of Calculus implies that

\[
u(x, y) = v(y) + \int_{x_0}^{x} f(t, y) \, dt
\]

for some $v(y)$ such that $v(y_0) = c_0$.
But
\[u_y = v'(y) + \int_{x_0}^{x} \frac{\partial f}{\partial y} \, dt = v'(y) + \int_{x_0}^{x} \frac{\partial g}{\partial x} \, dx = v'(y) + g(x, y) - g(x_0, y) \]
should be equal to \(g(x, y) \), so \(v'(y) = g(x_0, y) \). But \(v(y_0) = c_0 \), hence
\[v(y) = c_0 + \int_{y_0}^{y} g(x_0, s) \, ds. \]
In other words, the solution for the initial value problem is
\[u(x, y) = c_0 + \int_{y_0}^{y} g(x_0, s) \, ds + \int_{x_0}^{x} f(t, y) \, dt. \]

Given smooth maps \(A, B : \mathcal{O} \times \mathbb{R} \to \mathbb{R} \), we now consider the following first order PDE system for \(u : \mathcal{O} \to \mathbb{R} \):
\[
\begin{cases}
\frac{\partial u}{\partial x} = A(x, y, u(x, y)), \\
\frac{\partial u}{\partial y} = B(x, y, u(x, y)).
\end{cases}
\]
If we have a smooth solution \(u \) for (3.1.1), then \((u_x)_y = (u_y)_x \). But
\[
(u_x)_y = (A(x, y, u(x, y)))_y = A_y + A_u u_y = A_y + A_u B \\
= (u_y)_x = (B(x, y, u(x, y)))_x = B_x + B_u u_x = B_x + B_u A.
\]
Thus \(A, B \) must satisfy the following condition:
\[
A_y + A_u B = B_x + B_u A.
\]
The Frobenius Theorem states that (3.1.2) is both a necessary and sufficient condition for the first order PDE system (3.1.1) to be solvable. We will see from the proof of this theorem that, although we are dealing with a PDE, the algorithm to construct solutions of this PDE is to first solve an ODE system in \(x \) variable (first equation of (3.1.1) on the line \(y = y_0 \)), and then solve a family of ODE systems in \(y \) variables (the second equation of (3.1.1) for each \(x \)). The condition (3.1.2) guarantees that this process produces a solution of (3.1.1). We state the Theorem for \(u : \mathcal{O} \to \mathbb{R}^n \):

Theorem 3.1.1. (Frobenius Theorem) Let \(U_1 \subset \mathbb{R}^2 \) and \(U_2 \subset \mathbb{R}^n \) be open subsets, \(A = (A_1, \ldots, A_n), B = (B_1, \ldots, B_n) : U_1 \times U_2 \to \mathbb{R}^n \) smooth maps, \((x_0, y_0) \in U_1 \), and \(p_0 \in U_2 \). Then the following first order system
\[
\begin{cases}
\frac{\partial u}{\partial x} = A(x, y, u(x, y)), \\
\frac{\partial u}{\partial y} = B(x, y, u(x, y)), \\
u(x_0, y_0) = p_0,
\end{cases}
\]
has a smooth solution for \(u \) in a neighborhood of \((x_0, y_0) \) for all possible \((x_0, y_0) \in U_1 \) and \(p_0 \in U_2 \) if and only if
\[
(A_i)_y + \sum_{j=1}^{n} \frac{\partial A_i}{\partial u_j} B_j = (B_i)_x + \sum_{j=1}^{n} \frac{\partial B_i}{\partial u_j} A_j, \quad 1 \leq i \leq n,
\]
hold identically on \(U_1 \times U_2 \).
Equation (3.1.3) written in coordinates gives the following system:

\[
\begin{align*}
\frac{\partial u_i}{\partial x} &= A_i(x, y, u_1(x, y), \ldots, u_n(x, y)), \quad 1 \leq i \leq n, \\
\frac{\partial u_i}{\partial y} &= B_i(x, y, u_1(x, y), \ldots, u_n(x, y)), \quad 1 \leq i \leq n, \\
u_i(x_0, y_0) &= p^0_i,
\end{align*}
\]

where \(p_0 = (p^0_1, \ldots, p^0_n) \).

We call (3.1.4) the compatibility condition for the first order PDE (3.1.3).

To prove the Frobenius Theorem we need to solve a family of ODEs depending smoothly on a parameter, and we need to know whether the solutions depend smoothly on the initial data and the parameter. This was answered by the following Theorem in ODE:

Theorem 3.1.2. Let \(O \) be an open subset of \(\mathbb{R}^n \), \(t_0 \in (a_0, b_0) \), and \(f : [a_0, b_0] \times O \times [a_1, b_1] \to \mathbb{R}^n \) a smooth map. Given \(p \in O \) and \(r \in [a_1, b_1] \), let \(y^{p,r} \) denote the solution of

\[
\frac{dy}{dt} = f(t, y(t), r), \quad y(t_0) = p,
\]

and \(u(t, p, r) = y^{p,r}(t) \). Then \(u \) is smooth in \(t, p, r \).

Proof. Proof of Frobenius Theorem

If \(u = (u_1, \ldots, u_n) \) is a smooth solution of (3.1.3), then \(\frac{\partial}{\partial y} \frac{\partial u_i}{\partial x} = \frac{\partial}{\partial x} \frac{\partial u_i}{\partial y} \). Use the chain rule to get

\[
\begin{align*}
\frac{\partial}{\partial y} \frac{\partial u_i}{\partial x} &= \frac{\partial}{\partial y} A_i(x, y, u_1(x, y), \ldots, u_n(x, y)) = \frac{\partial A_i}{\partial y} + \sum_{j=1}^{n} \frac{\partial A_i}{\partial u_j} \frac{\partial u_j}{\partial y} \\
&= \frac{\partial A_i}{\partial y} + \sum_{j=1}^{n} \frac{\partial A_i}{\partial u_j} B_j, \\
\frac{\partial}{\partial x} \frac{\partial u_i}{\partial y} &= \frac{\partial}{\partial x} B_i(x, y, u(x, y)) = \frac{\partial B_i}{\partial x} + \sum_{j=1}^{n} \frac{\partial B_i}{\partial u_j} \frac{\partial u_j}{\partial x} \\
&= \frac{\partial B_i}{\partial x} + \sum_{j=1}^{n} \frac{\partial B_i}{\partial u_j} A_j,
\end{align*}
\]

so the compatibility condition (3.1.4) must hold.

Conversely, assume \(A, B \) satisfy (3.1.4). To solve (3.1.3), we proceed as follows: The existence and uniqueness Theorem of solutions of ODE implies that there exist \(\delta > 0 \) and \(\alpha : (x_0 - \delta, x_0 + \delta) \to U_2 \) satisfying

\[
(3.1.5) \quad \begin{cases}
\frac{d\alpha}{dx} = A(x, y_0, \alpha(x)), \\
\alpha(x_0) = p_0.
\end{cases}
\]

For each fixed \(x \in (x_0 - \delta, x_0 + \delta) \), let \(\beta^x(y) \) denote the unique solution of the following ODE in \(y \) variable:

\[
(3.1.6) \quad \begin{cases}
\frac{d\beta^x}{dy} = B(x, y, \beta^x(y)), \\
\beta^x(y_0) = \alpha(x).
\end{cases}
\]

Set \(u(x, y) = \beta^x(y) \). Note that (3.1.6) is a family of ODEs in \(y \) variable depending on the parameter \(x \) and \(B \) is smooth, so by Theorem 3.1.2, \(u \) is smooth in \(x, y \).
Hence \((u_x)_y = (u_y)_x\). By construction, \(u\) satisfies the second equation of (3.1.3) and \(u(x_0, y_0) = p_0\). It remains to prove \(u\) satisfies the first equation of (3.1.3). We will only prove this for the case \(n = 1\), and the proof for general \(n\) is similar. First let
\[
 z(x, y) = u_x - A(x, y, u(x, y)).
\]
But
\[
 z_y = (u_x - A(x, y, u))_y = u_{xy} - A_y - A_u u_y = (u_y)_x - (A_y + A_u B)
\]
\[
 = (B(x, y, u))_x - (A_y + A_u B) = B_x + B_u u_x - (A_y + A_u B)
\]
\[
 = B_x + B_u u_x - (B_x + B_u A) = B_u (u_x - A) = B_u (x, y, u(x, y)) z.
\]
This proves that for each \(x\), \(h^x(y) = z(x, y)\) is a solution of the following differential equation:

\[
(3.1.7)
\frac{dh}{dy} = B_u(x, y, u(x, y)) h.
\]
Since \(\alpha\) satisfies (3.1.5),
\[
 z(x, y_0) = u_x(x, y_0) - A(x, y_0, u(x, y_0)) = \alpha'(x) - A(x, y_0, \alpha(x)) = 0.
\]
So \(h^x\) is the solution of (3.1.7) with initial data \(h^x(y_0) = 0\). We observe that the zero function is also a solution of (3.1.7) with 0 initial data, so by the uniqueness of solutions of ODE we have \(h^x = 0\), i.e., \(z(x, y) = 0\), hence \(u\) satisfies the second equation of (3.1.3).

Remark 3.1.3. The proof of Theorem 3.1.1 gives the following algorithm to construct numerical solution of (3.1.3):

1. Solve the ODE (3.1.5) on the horizontal line \(y = y_0\) by a numerical method (for example Runge-Kutta) to get \(u(x_k, y_0)\) for \(x_k = x_0 + k\epsilon\) where \(\epsilon\) is the step size in the numerical method.
2. Solve the ODE system (3.1.6) on the vertical line \(x = x_k\) for each \(k\) to get the value \(u(x_k, y_m)\).

If \(A\) and \(B\) satisfies the compatibility condition, then \(u\) solves (3.1.3).

Let \(gl(n)\) denote the space of \(n \times n\) real matrices. Note that \(gl(n)\) can be identified as \(\mathbb{R}^{n^2}\). For \(P, Q \in gl(n)\), let \([P, Q]\) denote the commutator (also called the bracket) of \(P\) and \(Q\) defined by
\[
[P, Q] = PQ - QP.
\]

Corollary 3.1.4. Let \(U\) be an open subset of \(\mathbb{R}^2\), \((x_0, y_0) \in U\), \(C \in gl(n)\), and \(P, Q : U \to gl(n)\) smooth maps. Then the following initial value problem for \(u : U \to gl(n)\)

\[
(3.1.8)
\begin{align*}
 u_x &= u(x, y)P(x, y), \\
 u_y &= u(x, y)Q(x, y), \\
 u(x_0, y_0) &= C
\end{align*}
\]

has a smooth solution \(u\) defined in some small disk centered at \((x_0, y_0)\) for all possible \((x_0, y_0)\) in \(U\) and \(C \in gl(n)\) if and only if

\[
(3.1.9)
P_y - Q_x = [P, Q].
\]
Example 3.1.7. Given \(u, \xi \). This shows that we need for the Fundamental Theorem of surfaces in \(\mathbb{R}^n \). But we observe that the constant map (3.1.8) is a system of 9 equations for 18 functions because (3.1.8) is a system of 3 first order PDE involving six skew symmetric, i.e., \(P^T = -P \) and \(Q^T = -Q \), then \([P,Q] \) is also skew-symmetric because

\[
[P,Q]^T = (PQ - QP)^T = QTP^T + P^TQ^T = (-Q)(-P) - (-P)(-Q) = \quad PQ - P^TQ = [P,Q].
\]

In this case, equation (3.1.8) becomes a system of 3 first order PDE involving six functions \(p_{12}, p_{13}, p_{23}, q_{12}, q_{13}, q_{23} \).

Proposition 3.1.6. Let \(\mathcal{O} \) be an open subset of \(\mathbb{R}^2 \), and \(P, Q : \mathcal{O} \to gl(n) \) smooth maps such that \(P^T = -P \) and \(Q^T = -Q \). Suppose \(P, Q \) satisfy the compatibility condition (3.1.9), and the initial data \(C \) is an orthogonal matrix. If \(u : \mathcal{O}_0 \to gl(n) \) is the solution of (3.1.8), then \(u(x,y) \) is an orthogonal matrix for all \((x,y) \in \mathcal{O}_0 \).

Proof. Set

\[
\xi(x,y) = u(x,y)^T u(x,y).
\]

Then \(\xi(x_0,y_0) = u(x_0,y_0)^T u(x_0,y_0) = I \), the identity matrix. Compute directly to get

\[
\xi_x = (u_x)^T u + u^T u_x = (uP)^T u + u^T (uP) = P^T u^T u + u^T uP = P^T \xi + \xi P,
\]

\[
\xi_y = (u_y)^T u + u^T u_y = (uQ)^T u + u^T (uQ) = Q^T u^T u + u^T uQ = Q^T \xi + \xi Q.
\]

This shows that \(\xi \) satisfies

\[
\begin{align*}
\xi_x &= P^T \xi + \xi P, \\
\xi_y &= Q^T \xi + \xi Q, \\
\xi(x_0,y_0) &= I.
\end{align*}
\]

But we observe that the constant map \(\eta(x,y) = I \) is also a solution of the above initial value problem. By the uniqueness part of the Frobenius Theorem, \(\xi = \eta \), so \(u^T u = I \), i.e., \(u(x,y) \) is orthogonal for all \((x,y) \in \mathcal{O}_0 \).

Next we give some applications of the Frobenius Theorem 3.1.1:

Example 3.1.7. Given \(c_0 > 0 \), consider the following first order PDE

\[
\begin{align*}
\left\{ u_x &= 2 \sin u, \\
u_y &= \frac{1}{2} \sin u, \\
(0,0) &= c_0.
\end{align*}
\]

(3.1.10)
This is system (3.1.3) with \(A(x, y, u) = 2 \sin u, \ B(x, y, u) = \frac{1}{2} \sin u. \) We check the compatibility condition next:

\[
A_y + A_u B = 0 + (2 \cos u)(\frac{1}{2} \sin u) = \cos u \sin u, \\
B_x + B_u A = 0 + (\frac{1}{2} \sin u)(2 \cos u) = \sin u \cos u,
\]

so \(A_y + A_u B = B_x + B_u A. \) Thus by Frobenius Theorem, (3.1.10) is solvable. Next we use the method outlined in the proof of Frobenius Theorem to solve (3.1.10).

(i) The ODE

\[
\begin{aligned}
\frac{d\alpha}{dx} &= 2 \sin \alpha, \\
\alpha(0) &= c_0
\end{aligned}
\]

is separable, i.e., \(\frac{d\alpha}{\sin \alpha} = 2dx, \) so \(\int \frac{d\alpha}{\sin \alpha} = \int 2dx. \) This integration can be solved explicitly:

\[\alpha(x) = 2 \tan^{-1} \exp(2x + c). \]

But \(\alpha(0) = c_0 = 2 \tan^{-1} e^c \) implies that \(c = \ln(\tan \frac{c_0}{2}). \)

(ii) Solve

\[
\begin{aligned}
\frac{du}{dy} &= \frac{1}{2} \sin u, \\
u(x, 0) &= \alpha(x) = 2 \tan^{-1}(2x + c).
\end{aligned}
\]

We can solve this exactly the same way as in (i) to get

\[u(x, y) = 2 \tan^{-1}(\exp(2x + y + c)), \]

where \(c = \ln(\tan \frac{c_0}{2}). \)

Moreover, if \(u \) is a solution for (3.1.10), then

\[(u_x)_y = (2 \sin u)_y = 2 \cos u \ u_y = (2 \cos u)(\frac{1}{2} \sin u) = \cos u \sin u, \]

so \(u \) satisfies the following famous non-linear wave equation, the sine-Gordon equation (or SGE):

\[u_{xy} = \sin u \cos u. \]

The above example is a special case of the following Theorem of Bäcklund:

Theorem 3.1.8. Given a smooth function \(q : \mathbb{R}^2 \to \mathbb{R} \) and a non-zero real constant \(r, \) the following system of first order PDE is solvable for \(u : \mathbb{R}^2 \to \mathbb{R}: \)

\[
\begin{aligned}
&u_x = -q_s + r \sin(u - q), \\
u_t = q_t + \frac{1}{r} \sin(u + q).
\end{aligned}
\]

(3.1.11)

if and only if \(q \) satisfies the SGE:

\[q_{st} = \sin q \cos q. \]

SGE.

Moreover, the solution \(u \) of (3.1.11) is again a solution of the SGE.

Proof. If (3.1.11) has a \(C^2 \) solution \(u, \) then the mixed derivatives must be equal. Compute directly to see that

\[
(u_s)_t = -q_s + r \cos(u - q)(u - q)_t \\
= -q_s + r \cos(u - q) \left(\frac{1}{r} \sin(u + q) \right),
\]

and
so we get
(3.1.12) \((u_s)_t = -q_{st} + \cos(u - q) \sin(u + q)\).

A similar computation implies that
(3.1.13) \((u_t)_s = q_{ts} + \cos(u + q) \sin(u - q)\).

Since \(u_{st} = u_{ts}\) and \(\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B\), we get
\[-q_{st} + \cos(u - q) \sin(u + q) = q_{ts} + \cos(u + q) \sin(u - q),\]

so
\[2q_{st} = \sin(u + q) \cos(u - q) - \sin(u - q) \cos(u + q) = \sin(2q) = 2 \sin q \cos q.\]

In other words, the first order PDE (3.1.11) is solvable if and only if \(q\) is a solution of the SGE.

Add (3.1.12) and (3.1.13) to get
\[2u_{st} = \sin(u + q) \cos(u - q) + \sin(u - q) \cos(u + q) = \sin(2u) = 2 \sin u \cos u.\]

This shows that if \(u\) is a solution of (3.1.11) then \(u_{st} = \sin u \cos u. \Box\)

The above theorem says that if we know one solution \(q\) of the SGE then we can solve the first order system (3.1.11) to construct a family of solutions of the SGE (one for each real constant \(r\)). Note that \(q = 0\) is a trivial solution of the SGE. Theorem 3.1.8 implies that system (3.1.11) can be solved for \(u\) with \(q = 0\), i.e.,
(3.1.14) \[
\begin{aligned}
\begin{cases}
 u_s &= r \sin u, \\
 u_t &= \frac{1}{r} \sin u
\end{cases}
\end{aligned}
\]
is solvable. (3.1.14) can be solved exactly the same way as in Example 3.1.7, and we get
\[u(s, t) = 2 \arctan \left(e^{r \frac{s+\frac{t}{2}}{2}} \right),\]
which are solutions of the SGE. The SGE is a so called “soliton” equation, and these solutions are called ”1-solitons”. A special feature of soliton equations is the existence of first order systems that can generate new solutions from an old one.

3.2. Line of curvature coordinates.

Definition 3.2.1. A parametrized surface \(f : \mathcal{O} \rightarrow \mathbb{R}^3\) is said to be parametrized by line of curvature coordinates if \(g_{12} = \ell_{12} = 0\), or equivalently, both the first and second fundamental forms are in diagonal forms.

If \(f : \mathcal{O} \rightarrow \mathbb{R}^3\) is a surface parametrized by line of curvature coordinates, then
\[I = g_{11}dx_1^2 + g_{22}dx_2^2, \quad II = \ell_{11}dx_1^2 + \ell_{22}dx_2^2.\]
The principal, Gaussian and mean curvatures are given by the following formulas:
\[k_1 = \frac{\ell_{11}}{g_{11}}, \quad k_2 = \frac{\ell_{22}}{g_{22}}, \quad H = \frac{\ell_{11}}{g_{11}} + \frac{\ell_{22}}{g_{22}}, \quad K = \frac{\ell_{11}\ell_{22}}{g_{11}g_{22}}.\]
Example 3.2.2. Let \(u : [a, b] \rightarrow \mathbb{R} \) be a smooth function, and

\[
 f(y, \theta) = (u(y) \sin \theta, y, u(y) \cos \theta),
\]

so the image of \(f \) is the surface of revolution obtained by rotating the curve \(z = u(y) \) in the \(yz \)-plane along the \(y \)-axis. Then

\[
 f_y = (u'(y) \sin \theta, 1, u'(y) \cos \theta), \\
 f_\theta = (u(y) \cos \theta, 0, -u(y) \sin \theta), \\
 N = \frac{f_y \times f_\theta}{|f_y \times f_\theta|} = \frac{(-\sin \theta, u'(y), -\cos \theta)}{\sqrt{1 + (u'(y))^2}}, \\
 f_{yy} = (u''(y) \sin \theta, 0, u''(y) \cos \theta), \\
 f_{y\theta} = (u'(y) \cos \theta, 0, -u'(y) \sin \theta), \\
 f_{\theta\theta} = (-u(y) \sin \theta, 0, -u(y) \cos \theta).
\]

So

\[
 g_{11} = 1 + (u'(y))^2, \quad g_{22} = u(y)^2, \quad g_{12} = 0, \\
 \ell_{11} = \frac{-u''(y)}{\sqrt{1 + (u'(y))^2}}, \quad \ell_{22} = \frac{u(y)}{\sqrt{1 + (u'(y))^2}}, \quad \ell_{12} = 0,
\]

i.e., \((y, \theta)\) is a line of curvature coordinate system.

Proposition 3.2.3. If the principal curvatures \(k_1(p_0) \neq k_2(p_0) \) for some \(p_0 \in \mathcal{O} \), then there exists \(\delta > 0 \) such that the ball \(B(p_0, \delta) \) of radius \(\delta \) centered at \(p_0 \) is contained in \(\mathcal{O} \) and \(k_1(p) \neq k_2(p) \) for all \(p \in B(p_0, \epsilon) \).

Proof. The Gaussian and mean curvature \(K \) and \(H \) of the parametrized surface \(f : \mathcal{O} \rightarrow \mathbb{R}^3 \) are smooth. The two principal curvatures are roots of \(\lambda^2 - H\lambda + K = 0 \), so we may assume

\[
 k_1 = \frac{H + \sqrt{H^2 - 4K}}{2}, \quad k_2 = \frac{H - \sqrt{H^2 - 4K}}{2}.
\]

Note that the two real roots are distinct if and only if \(u = H^2 - 4K > 0 \). If \(k_1(p_0) \neq k_2(p_0) \), then \(u(p_0) > 0 \). But \(u \) is continuous, so there exists \(\delta > 0 \) such that \(u(p) > 0 \) for all \(p \in B(p_0, \delta) \), thus \(k_1(p) \neq k_2(p) \) in this open disk. \(\square \)

A smooth map \(v : \mathcal{O} \rightarrow \mathbb{R}^3 \) is called a **tangent vector field** of the parametrized surface \(f : \mathcal{O} \rightarrow \mathbb{R}^3 \) if \(v(p) \in Tf_p \) for all \(p \in \mathcal{O} \).

Proposition 3.2.4. Let \(f : \mathcal{O} \rightarrow \mathbb{R}^3 \) be a parametrized surface. If its principal curvatures \(k_1(p) \neq k_2(p) \) for all \(p \in \mathcal{O} \), then there exist smooth, o.n., tangent vector fields \(e_1, e_2 \) on \(f \) that are \(e_1(p), e_2(p) \) are eigenvector for the shape operator \(S_p \) for all \(p \in \mathcal{O} \).

Proof. This Proposition follows from the facts that

1. self-adjoint operators have an o.n. basis consisting of eigenvectors,
2. the shape operator \(S_p \) is a self-adjoint linear operator from \(Tf_p \) to \(Tf_p \),
3. the formula we gave for self-adjoint operator on a 2-dimensional inner product space implies that the eigenvectors of the shape operator are smooth maps.

\(\square \)
We assume the following Proposition without a proof:

Proposition 3.2.5. Let \(f : \mathcal{O} \to \mathbb{R}^3 \) be a parametrized surface. Suppose \(\xi_1, \xi_2 : \mathcal{O} \to \mathbb{R}^3 \) are tangent vector fields of \(f \) such that \(\xi_1(p), \xi_2(p) \) are linearly independent for all \(p \in \mathcal{O} \). Then given any \(p_0 \in \mathcal{O} \) there exists \(\delta > 0 \), an open subset \(U \) of \(\mathbb{R}^2 \), and a diffeomorphism \(\phi : U \to B(p_0, \delta) \) such that \(\xi_1 \) and \(\xi_2 \) are parallel to \(h_{x_1} \) and \(h_{x_2} \) respectively, where \(h = f \circ \phi : U \to \mathbb{R}^3 \).

As a consequence of the above two Propositions, we see that

Corollary 3.2.6. Let \(f : \mathcal{O} \to \mathbb{R}^3 \) be a parametrized surface, and \(p_0 \in \mathcal{O} \). If \(k_1(p_0) \neq k_2(p_0) \), then there exist an open subset \(\mathcal{O}_0 \) containing \(p_0 \), an open subset \(U \) of \(\mathbb{R}^2 \), and a diffeomorphism \(\phi : U \to \mathcal{O}_0 \) such that \(f \circ \phi \) is parametrized by lines of curvature coordinates. In other words, we can change coordinates (or reparametrized the surface) near \(p_0 \) by lines of curvature coordinates.

We call \(f(p_0) \) an umbilic point of the parametrized surface \(f : \mathcal{O} \to \mathbb{R}^3 \) if \(k_1(p_0) = k_2(p_0) \). The above Corollary implies that away from umbilic points, we can parametrized a surface by line of curvature coordinates locally.

3.3. The Gauss-Codazzi equation in line of curvature coordinates.

Suppose \(f : \mathcal{O} \to \mathbb{R}^3 \) is a surface parametrized by line of curvature coordinates, i.e.,

\[
g_{12} = f_{x_1} \cdot f_{x_2} = 0, \quad \ell_{12} = f_{x_1 x_2} \cdot N = 0.
\]

We define \(A_1, A_2, r_1, r_2 \) as follows:

\[
g_{11} = f_{x_1} \cdot f_{x_1} = A_1^2, \quad g_{22} = f_{x_2} \cdot f_{x_2} = A_2^2, \quad
\ell_{11} = f_{x_1 x_1} \cdot N = r_1 A_1, \quad \ell_{22} = f_{x_2 x_2} \cdot N = r_2 A_2.
\]

Or equivalently,

\[
A_1 = \sqrt{g_{11}}, \quad A_2 = \sqrt{g_{22}}, \quad r_1 = \frac{\ell_{11}}{A_1}, \quad r_2 = \frac{\ell_{22}}{A_2}.
\]

Set

\[
e_1 = \frac{f_{x_1}}{A_1}, \quad e_2 = \frac{f_{x_2}}{A_2}, \quad e_3 = N.
\]

Then \((e_1, e_2, e_3)\) is an o.n. moving frame on the surface \(f \). Recall that if \(\{e_1, e_2, e_3\} \) is an orthonormal basis of \(\mathbb{R}^3 \), then given any \(\xi \in \mathbb{R}^3 \), \(\xi = \sum_{i=1}^{3} a_i e_i \), where \(a_i = \xi \cdot e_i \). Since \((e_i)_{x_1}\) and \((e_i)_{x_2}\) are vectors in \(\mathbb{R}^3 \), we can write them as linear combinations of \(e_1, e_2 \) and \(e_3 \). We use \(p_{ij} \) to denote the coefficient of \(e_i \) for \((e_j)_{x_1}\), and use \(q_{ij} \) to denote the coefficient of \(e_i \) for \((e_j)_{x_2}\), i.e.,

\[
\begin{align*}
(e_1)_{x_1} &= p_{11} e_1 + p_{21} e_2 + p_{31} e_3, \\
(e_2)_{x_1} &= p_{12} e_1 + p_{22} e_2 + p_{32} e_3, \\
(e_3)_{x_1} &= p_{13} e_1 + p_{23} e_2 + p_{33} e_3, \\
(e_1)_{x_2} &= q_{11} e_1 + q_{21} e_2 + q_{31} e_3, \\
(e_2)_{x_2} &= q_{12} e_1 + q_{22} e_2 + q_{32} e_3, \\
(e_3)_{x_2} &= q_{13} e_1 + q_{23} e_2 + q_{33} e_3,
\end{align*}
\]

where

\[
p_{ij} = (e_j)_{x_1} \cdot e_i, \quad q_{ij} = (e_j)_{x_2} \cdot e_i.
\]
Recall that the matrix $P = (p_{ij})$ and $Q = (q_{ij})$ must be skew-symmetric because

$$
(e_i \cdot e_j)_{x_i} = 0 = (e_i)_{x_i} \cdot e_j + e_i \cdot (e_j)_{x_i} = p_{ji} + p_{ij}.
$$

Next we want to show that p_{ij} and q_{ij} can be written in terms of coefficients of the first and second fundamental forms. We proceed as follows:

$$p_{12} = (e_2)_{x_1} \cdot e_1 = \left(\frac{f_{x_2}}{A_2} \right)_{x_1} \cdot \frac{f_{x_1}}{A_1} = \left(\frac{f_{x_2}}{A_2} - \frac{f_{x_2} (A_2)_{x_1}}{A_2^2} \right) \cdot \frac{f_{x_1}}{A_1}$$

$$= \frac{f_{x_1 x_2}}{A_1 A_2} f_{x_1} - \frac{A_2}{A_1 A_2} f_{x_2} f_{x_1} = \frac{1}{2} \left(f_{x_1} \cdot f_{x_1} \right)_{x_2} = \frac{1}{2} \left(A_2 \right)_{x_2} - 0$$

$$= \frac{A_1 (A_1)_{x_2}}{A_1 A_2} = \frac{(A_1)^2}{A_2}.$$

$$p_{31} = (e_1)_{x_1} \cdot e_3 = \left(\frac{f_{x_1}}{A_1} \right)_{x_1} \cdot \frac{e_3}{A_3} = \left(\frac{f_{x_1 x_1}}{A_1} - \frac{f_{x_1} (A_1)_{x_1}}{A_1^2} \right) \cdot N$$

$$= \frac{f_{x_1 x_1}}{A_1} - \frac{(A_1)_{x_1}}{A_1^2} f_{x_1} \cdot N = \ell_{11} \frac{A_1}{A_1} - 0 = r_1.$$

$$p_{32} = (e_2)_{x_1} \cdot e_3 = \left(\frac{f_{x_2}}{A_2} \right)_{x_1} \cdot N = \left(\frac{f_{x_2 x_1}}{A_2} - \frac{f_{x_2} (A_2)_{x_1}}{A_2^2} \right) \cdot N = 0$$

So we have proved that

$$p_{12} = \frac{(A_1)^2}{A_2}, \quad p_{31} = r_1, \quad p_{32} = 0.$$

In the above computations we have used $f_{x_1} \cdot f_{x_2} = 0, f_{x_1 x_2} \cdot N = 0, f_{x_1} \cdot N = f_{x_2} \cdot N = 0$. Similar computation gives

$$q_{12} = -\frac{(A_2)_{x_1}}{A_1}, \quad q_{31} = 0, \quad q_{32} = r_2.$$

Since P, Q are skew-symmetric, we have

$$(3.3.2) \quad P = \begin{pmatrix}
0 & \frac{(A_1)^2}{A_2} & -r_1 \\
-\frac{(A_1)_{x_2}}{A_2} & 0 & 0 \\
r_1 & 0 & 0
\end{pmatrix}, \quad Q = \begin{pmatrix}
0 & -\frac{(A_2)_{x_1}}{A_1} & 0 \\
\frac{(A_2)_{x_2}}{A_1} & 0 & -r_2 \\
r_2 & 0 & 0
\end{pmatrix}.$$

So $(3.3.1)$ becomes

$$
\begin{cases}
(e_1)_{x_1} = -(A_1)^2 e_2 + r_1 e_3, \\
(e_2)_{x_1} = (A_1)_{x_2} e_1, \\
(e_3)_{x_1} = -r_1 e_1,
\end{cases}
\begin{cases}
(e_1)_{x_2} = (A_2)_{x_1} e_2, \\
(e_2)_{x_2} = -(A_2)_{x_2} e_1 + r_2 e_3, \\
(e_3)_{x_2} = -r_2 e_2.
\end{cases}
$$

We can also write $(3.3.1)$ in matrix form:

$$(3.3.3) \quad \begin{cases}
(e_1, e_2, e_3)_{x_1} = (e_1, e_2, e_3) P, \\
(e_1, e_2, e_3)_{x_2} = (e_1, e_2, e_3) Q,
\end{cases}$$
where \(P, Q \) are given by (3.3.2). It follows from Corollary 1.04 \(\square \) of the section on Frobenius Theorem \(\square \) that \(P, Q \) must satisfy the compatibility condition

\[P_{x_2} - Q_{x_1} = PQ - QP. \]

Use the formula of \(P, Q \) given by (3.3.2) to compute directly to get

\[
PQ - QP = \begin{pmatrix} 0 & p & -r_1 \\ -p & 0 & 0 \\ r_1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & q & 0 \\ -q & 0 & -r_2 \\ 0 & r_2 & 0 \end{pmatrix} - \begin{pmatrix} 0 & q & 0 \\ -q & 0 & 0 \\ 0 & r_2 & 0 \end{pmatrix} \begin{pmatrix} 0 & p & -r_1 \\ -p & 0 & 0 \\ r_1 & 0 & 0 \end{pmatrix}.
\]

Then

\[
P_{x_2} - Q_{x_1} = \begin{pmatrix} 0 & p_{x_2} - q_{x_1} & -(r_1)_{x_2} \\ -(p_{x_2} - q_{x_1}) & 0 & (r_2)_{x_1} \\ (r_1)_{x_2} & -(r_2)_{x_1} & 0 \end{pmatrix},
\]

where

\[p = \frac{(A_1)_{x_2}}{A_2}, \quad q = -\frac{(A_2)_{x_1}}{A_1}. \]

Since

\[PQ - QP = P_{x_2} - Q_{x_1}, \]

we get

\[
\begin{cases}
\left(\frac{(A_1)_{x_2}}{A_2}\right)_{x_1} + \left(\frac{(A_2)_{x_1}}{A_1}\right)_{x_2} = -r_1 r_2, \\
(r_1)_{x_2} = \frac{(A_1)_{x_2}}{A_2} r_2, \\
(r_2)_{x_1} = -\frac{(A_2)_{x_1}}{A_1} r_1.
\end{cases}
\]

System (3.3.4) is called the Gauss-Codazzi equation. So we have proved:

Theorem 3.3.1. Let \(f : \mathcal{O} \to \mathbb{R}^3 \) be a surface parametrized by line of curvature coordinates, and

\[A_1 = \sqrt{g_{11}}, \quad A_2 = \sqrt{g_{22}}, \quad r_1 = \frac{\ell_{11}}{A_1}, \quad r_2 = \frac{\ell_{22}}{A_2}. \]

Set

\[e_1 = \frac{f_{x_1}}{A_1}, \quad e_2 = \frac{f_{x_2}}{A_2}, \quad e_3 = \frac{f_{x_1} \times f_{x_2}}{||f_{x_1} \times f_{x_2}||} = e_1 \times e_2. \]

Then \(A_1, A_2, r_1, r_2 \) satisfy the Gauss-Codazzi equation (3.3.4) and

\[
\begin{cases}
(f, e_1, e_2, e_3)_{x_1} = (e_1, e_2, e_3) \begin{pmatrix} A_1 & 0 & \frac{(A_1)_{x_2}}{A_2} & -r_1 \\ 0 & -\frac{(A_1)_{x_2}}{A_2} & 0 & 0 \\ 0 & r_1 & 0 & 0 \\ 0 & 0 & -\frac{(A_2)_{x_1}}{A_1} & 0 \end{pmatrix}, \\
(f, e_1, e_2, e_3)_{x_2} = (e_1, e_2, e_3) \begin{pmatrix} A_2 & 0 & \frac{(A_2)_{x_1}}{A_1} & 0 \\ 0 & -\frac{(A_2)_{x_1}}{A_1} & 0 & -r_2 \\ 0 & 0 & r_2 & 0 \\ 0 & 0 & 0 & r_2 \end{pmatrix}.
\end{cases}
\]
3.4. Fundamental Theorem of surfaces in line of curvature coordinates.

The converse of Theorem 3.3.1 is also true, which is the Fundamental Theorem of surfaces in \(\mathbb{R}^3 \) with respect to line of curvature coordinates:

Theorem 3.4.1. Suppose \(A_1, A_2, r_1, r_2 \) are smooth functions from \(\mathcal{O} \) to \(\mathbb{R} \), that satisfy the Gauss-Codazzi equation (3.3.4), and \(A_1 > 0, A_2 > 0 \). Given \(p_0 \in \mathcal{O}, \ y_0 \in \mathbb{R}^3 \), and an o.n. basis \(v_1, v_2, v_3 \) of \(\mathbb{R}^3 \), then there exist an open subset \(\mathcal{O}_0 \) of \(\mathcal{O} \) containing \(p_0 \) and a unique solution \((f, e_1, e_2, e_3) : \mathcal{O}_0 \to (\mathbb{R}^3)^4 \) of (3.3.5) that satisfies the initial condition

\[
(f, e_1, e_2, e_3)(p_0) = (y_0, v_1, v_2, v_3).
\]

Moreover, \(f \) is a parametrized surface and its first and second fundamental forms are

\[
I = A_1^2 \, dx_1^2 + A_2^2 \, dx_2^2, \quad II = r_1 A_1 \, dx_1^2 + r_2 A_2 \, dx_2^2.
\]

Proof. We have proved that the compatibility condition for (3.3.3) is the Gauss-Codazzi equation (3.3.4), so by the Forbenius Theorem (3.3.3) is solvable. Let \((e_1, e_2, e_3) \) be the solution with initial data

\[
(e_1, e_2, e_3)(p_0) = (v_1, v_2, v_3).
\]

Since \(P, Q \) are skew-symmetric and \((v_1, v_2, v_3) \) is an orthogonal matrix, by Proposition 1.0.6 of the section on Frobenius Theorem that the solution \((e_1, e_2, e_3)(p) \) is an orthogonal matrix for all \(p \in \mathcal{O} \). To construct the surface, we need to solve

\[
\begin{cases}
 f_{x_1} = A_1 e_1, \\
 f_{x_2} = A_2 e_2.
\end{cases}
\]

Note that the right hand side is known, so this system is solvable if and only if

\[
(A_1 e_1)_{x_2} = (A_2 e_2)_{x_1}.
\]

To see this, we compute

\[
(A_1 e_1)_{x_2} = (A_1)_{x_2} e_1 + A_1 (e_1)_{x_2} = (A_1)_{x_2} e_1 + A_1 \left(\frac{A_2}{A_1} \right)_{x_2} e_2
\]

\[
= (A_1)_{x_2} e_1 + (A_2)_{x_1} e_2,
\]

\[
(A_2 e_2)_{x_1} = (A_2)_{x_1} e_2 + A_2 (e_2)_{x_1} = (A_2)_{x_1} e_2 + A_2 \left(\frac{A_1}{A_2} \right)_{x_1} e_1
\]

\[
= (A_2)_{x_1} e_2 + (A_1)_{x_2} e_1,
\]

and see that \((A_1 e_1)_{x_2} = (A_2 e_2)_{x_1} \), so (3.4.1) is solvable. Hence we can solve (3.4.1) by integration. It then follows that \((f, e_1, e_2, e_3) \) is a solution of (3.3.5) with initial data \((y_0, v_1, v_2, v_3) \). But (3.4.1) implies that \(f_{x_1}, f_{x_2} \) are linearly independent, so \(f \) is a parametrized surface, \(e_3 \) is normal to \(f \), and \(I = A_1^2 dx_1^2 + A_2^2 dx_2^2 \). Recall that

\[
\ell_{ij} = f_{x_i x_j} \cdot N = f_{x_i x_j} \cdot e_3 = -(e_3)_{x_i} \cdot e_j,
\]

So \(\ell_{11} = -(e_3)_{x_1} \cdot f_{x_1} = -(-r_1 e_1) \cdot A_1 e_1 = r_1, \ \ell_{12} = -(e_3)_{x_2} \cdot A_1 e_1 = 0, \) and \(\ell_{22} = -(e_3)_{x_2} \cdot f_{x_2} = -(-r_2 e_2) \cdot A_2 e_2 = r_2 A_2 \). Thus \(II = r_1 A_1 \, dx_1^2 + r_2 A_2 \, dx_2^2 \). □

Corollary 3.4.2. Suppose \(f, g : \mathcal{O} \to \mathbb{R}^3 \) are two surfaces parametrized by line of curvature coordinates, and \(f, g \) have the same first and second fundamental forms

\[
I = A_1^2 \, dx_1^2 + A_2^2 \, dx_2^2, \quad II = r_1 A_1 \, dx_1^2 + r_2 A_2 \, dx_2^2.
\]
Then there exists a rigid motion \(\phi \) of \(\mathbb{R}^3 \) such that \(g = \phi \circ f \).

Proof. Let

\[
e_1 = \frac{f_{x_1}}{A_1}, \quad e_2 = \frac{f_{x_2}}{A_2}, \quad e_3 = \frac{f_{x_1} \times f_{x_2}}{||f_{x_1} \times f_{x_2}||},
\]

\[
\xi_1 = \frac{g_{x_1}}{A_1}, \quad \xi_2 = \frac{g_{x_2}}{A_2}, \quad \xi_3 = \frac{g_{x_1} \times g_{x_2}}{||f_{x_1} \times f_{x_2}||},
\]

Fix \(p_0 \in \mathcal{O} \), and let \(\phi(x) = Tx + b \) be the rigid motion such that \(\phi(f(p_0)) = g(p_0) \) and \(T(e_i(p_0)) = \xi_i(p_0) \) for all \(1 \leq i \leq 3 \). Then

1. \(\phi \circ f \) have the same I, II as \(f \), so \(\phi \circ f \) and \(g \) have the same I, II,
2. the o.n. moving frame for \(\phi \circ f \) is \((Te_1, Te_2, Te_3) \).

Thus both \((\phi \circ f, Te_1, Te_2, Te_3) \) and \((g, \xi_1, \xi_2, \xi_3) \) are solutions of (3.3.5) with the same initial condition \((g(p_0), \xi_1(p_0), \xi_2(p_0), \xi_3(p_0)) \). But Frobenius Theorem says that there is a unique solution for the initial value problem, hence

\[
(\phi \circ f, T\xi_1, T\xi_2, T\xi_3) = (g, \xi_1, \xi_2, \xi_3).
\]

In particular, this proves that \(\phi \circ f = g \). \(\square \)

3.5. Gauss Theorem in line of curvature coordinates.

We know that the Gaussian curvature \(K \) depends on both I and II. The Gauss Theorem says that in fact \(K \) can be computed from I alone. We will first prove this when the surface is parametrized by line of curvatures.

Theorem 3.5.1. Gauss Theorem in line of curvature coordinates

Suppose \(f : \mathcal{O} \to \mathbb{R}^3 \) is a surface parametrized by line of curvatures, and

\[
I = A_1^2 dx_1^2 + A_2^2 dx_2^2, \quad II = r_1 A_1 dx_1^2 + r_2 A_2 dx_2^2.
\]

Then

\[
K = -\frac{\frac{(A_1)_{x_2}}{A_2} x_2 + \frac{(A_2)_{x_1}}{A_1} x_1}{A_1 A_2},
\]

so \(K \) can be computed from I alone.

Proof. Recall that

\[
K = \frac{\det(\ell_{ij})}{\det(g_{ij})} = \frac{r_1 A_1 r_2 A_2}{A_1^2 A_2^2} = \frac{r_1 r_2}{A_1 A_2}.
\]

But the first equation in the Gauss-Codazzi equation is

\[
\left(\frac{(A_1)_{x_2}}{A_2} \right) x_2 + \left(\frac{(A_2)_{x_1}}{A_1} \right) x_1 = -r_1 r_2.
\]

So

\[
K = -\frac{\frac{(A_1)_{x_2}}{A_2} x_2 + \frac{(A_2)_{x_1}}{A_1} x_1}{A_1 A_2}.
\]

\(\square \)
3.6. Gauss-Codazzi equation in local coordinates.

We will derive the Gauss-Codazzi equations for arbitrary parametrized surface \(f : \mathcal{O} \to U \subset \mathbb{R}^3 \).

Our experience in curve theory tells us that we should find a moving frame on the surface and then differentiate the moving frame to get relations among the invariants. We will use moving frames \(F = (v_1, v_2, v_3) \) on the surface to derive the relations among local invariants, where \(v_1 = f_{x_1}, v_2 = f_{x_2}, \) and \(v_3 = N \) the unit normal. Express the \(x \) and \(y \) derivatives of the local frame \(v_i \) in terms of \(v_1, v_2, v_3 \), then their coefficients can be written in terms of the two fundamental forms. Since \((v_i)_{xy} = (v_i)_{yx} \), we obtain a PDE relation for \(I \) and \(II \). This is the Gauss-Codazzi equation of the surface. Conversely, given two symmetric bilinear forms \(g, b \) on an open subset \(\mathcal{O} \) of \(\mathbb{R}^2 \) such that \(g \) is positive definite and \(g, b \) satisfies the Gauss-Codazzi equation, then by the Frobenius Theorem there exists a surface in \(\mathbb{R}^3 \) unique up to rigid motion having \(g, b \) as the first and second fundamental forms respectively.

We use the frame \((f_{x_1}, f_{x_2}, N) \), where

\[
N = \frac{f_{x_1} \times f_{x_2}}{\| f_{x_1} \times f_{x_2} \|}
\]

is the unit normal vector field. Since \(f_{x_1}, f_{x_2}, N \) form a basis of \(\mathbb{R}^3 \), the partial derivatives of \(f_x \) and \(N \) can be written as linear combinations of \(f_{x_1}, f_{x_2} \) and \(N \). So we have

\[
\begin{align*}
(f_{x_1}, f_{x_2}, N)_{x_1} &= (f_{x_1}, f_{x_2}, N)P,
(f_{x_1}, f_{x_2}, N)_{x_2} &= (f_{x_1}, f_{x_2}, N)Q,
\end{align*}
\]

where \(P = (p_{ij}), Q = (q_{ij}) \) are \(\text{gl}(3) \)-valued maps. This means that

\[
\begin{align*}
f_{x_1 x_1} &= p_{11} f_{x_1} + p_{21} f_{x_2} + p_{31} N, \\
f_{x_1 x_2} &= p_{12} f_{x_1} + p_{22} f_{x_2} + p_{32} N, \\
f_{x_1 N} &= p_{13} f_{x_1} + p_{23} f_{x_2} + p_{33} N, \\
f_{x_2 x_1} &= q_{11} f_{x_1} + q_{21} f_{x_2} + q_{31} N, \\
f_{x_2 x_2} &= q_{12} f_{x_1} + q_{22} f_{x_2} + q_{32} N, \\
f_{x_2 N} &= q_{13} f_{x_1} + q_{23} f_{x_2} + q_{33} N.
\end{align*}
\]

Recall that the fundamental forms are given by

\[
g_{ij} = f_{x_i} \cdot f_{x_j}, \quad \ell_{ij} = -f_{x_i} \cdot N_{x_j} = f_{x_i x_j} \cdot N.
\]

We want to express \(P \) and \(Q \) in terms of \(g_{ij} \) and \(h_{ij} \). To do this, we need the following Propositions.

Proposition 3.6.1. Let \(V \) be a vector space with an inner product \((,\), \(v_1, \cdots, v_n \) a basis of \(V \), and \(g_{ij} = (v_i, v_j) \). Let \(\xi \in V \), \(\xi_i = (\xi, v_i) \), and \(\xi = \sum_{i=1}^n x_i v_i \). Then

\[
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
= G^{-1}
\begin{pmatrix}
 \xi_1 \\
 \vdots \\
 \xi_n
\end{pmatrix},
\]

where \(G = (g_{ij}) \).

Proof. Note that

\[
\xi_i = (\xi, v_i) = \sum_{j=1}^n x_j v_j, v_i = \sum_{j=1}^n x_j (v_j, v_i) = \sum_{j=1}^n g_{ji} x_j.
\]
So \((\xi_1, \cdots, \xi_n)^4 = G(x_1, \cdots, x_n)^4\).

\[\Box\]

Proposition 3.6.2. The following statements are true:

1. The \(gl(3)\) valued functions \(P = (p_{ij})\) and \(Q = (q_{ij})\) in equation (3.6.1) can be written in terms of \(g_{ij}, \ell_{ij}\), and first partial derivatives of \(g_{ij}\).

2. The entries \(\{p_{ij}, q_{ij} \mid 1 \leq i, j \leq 2\}\) can be computed from the first fundamental form.

Proof. We claim that

\[f_{x_i x_j} \cdot f_{x_k}, \quad f_{x_i x_j} \cdot N, \quad N_{x_i} \cdot f_{x_j}, \quad N_{x_i} \cdot N,\]

can be expressed in terms of \(g_{ij}, \ell_{ij}\) and first partial derivatives of \(g_{ij}\). Then the Proposition follows from Proposition 3.6.1. To prove the claim, we proceed as follows:

\[
\begin{cases}
 f_{x_i x_i} \cdot f_{x_i} = \frac{1}{2}(g_{ii})_{x_i}, \\
 f_{x_i x_j} \cdot f_{x_i} = \frac{1}{2}(g_{ii})_{x_j}, & \text{if } i \neq j, \\
 f_{x_i x_i} \cdot f_{x_j} = (f_{x_i} \cdot f_{x_j})_{x_i} - f_{x_i} \cdot f_{x_i x_j} = (g_{ij})_{x_i} - \frac{1}{2}(g_{ii})_{x_j}, & \text{if } i \neq j
\end{cases}
\]

\[
\begin{cases}
 f_{x_i x_j} \cdot N = \ell_{ij}, \\
 N_{x_i} \cdot f_{x_j} = -\ell_{ij}, \\
 N_{x_i} \cdot N = 0.
\end{cases}
\]

Let

\[G = \begin{pmatrix} g_{11} & g_{12} & 0 \\ g_{12} & g_{22} & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

By Proposition 3.6.1, we have

\[
P = \left(\frac{1}{2}(g_{11})_{x_1} \begin{pmatrix} g_{11} & g_{12} & 0 \\ g_{12} & g_{22} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2(g_{11})_{x_1} & 1/2(g_{11})_{x_2} & -\ell_{11} \\ 1/2(g_{12})_{x_1} & 1/2(g_{22})_{x_1} & -\ell_{12} \\ \ell_{11} & \ell_{12} & 0 \end{pmatrix}
\]

\[= G^{-1}A_1,\]

\[
Q = \begin{pmatrix} g_{11} & g_{12} & 0 \\ g_{12} & g_{22} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2(g_{11})_{x_2} & (g_{12})_{x_2} - 1/2(g_{22})_{x_1} & -\ell_{12} \\ 1/2(g_{12})_{x_2} & (g_{22})_{x_2} - 1/2(g_{11})_{x_1} & -\ell_{22} \\ \ell_{12} & \ell_{22} & 0 \end{pmatrix}
\]

\[= G^{-1}A_2.
\]

This proves the Proposition.

Formula (3.6.2) gives explicit formulas for entries of \(P\) and \(Q\) in terms of \(g_{ij}\) and \(\ell_{ij}\). Moreover, they are related to the Christoffel symbols \(\Gamma^i_{jk}\) arise in the geodesic equation (3.3.1) in Theorem 3.3. Recall that

\[
\Gamma^i_{jk} = \frac{1}{2}g^{km}[ij, m],
\]

where \((g^{ij})\) is the inverse matrix of \((g_{ij})\), \([ij, k] = g_{ki,j} + g_{jk,i} - g_{ij,k}\), and \(g_{ij,k} = \frac{\partial g_{ij}}{\partial x_k}\).

Theorem 3.6.3. For \(1 \leq i, j \leq 2\), we have

\[
(3.6.3) \quad p_{ji} = \Gamma^j_{i1}, \quad q_{ji} = \Gamma^j_{i2}
\]
Proof. Note that (3.6.4) implies

\[
\begin{align*}
\frac{p_{11}}{2} g^{11} g_{11,1} + g^{12} (g_{12,1} - \frac{1}{2} g_{11,2}) &= \Gamma_{11}^1, \\
\frac{p_{12}}{2} g^{11} g_{11,2} + \frac{1}{2} g^{12} g_{22,1} &= \Gamma_{21}^1, \\
\frac{p_{21}}{2} g^{12} g_{11,1} + g^{22} (g_{12,1} - \frac{1}{2} g_{11,2}) &= \Gamma_{11}^2, \\
\frac{p_{22}}{2} g^{12} g_{11,2} + \frac{1}{2} g^{22} g_{22,1} &= \Gamma_{21}^2, \\
\frac{q_{11}}{2} g^{11} g_{11,2} + \frac{1}{2} g^{12} g_{22,1} &= \Gamma_{12}^1, \\
\frac{q_{12}}{2} g^{11} g_{12,2} - \frac{1}{2} g^{22} g_{22,2} &= \Gamma_{11}^2, \\
\frac{q_{21}}{2} g^{12} g_{11,2} + \frac{1}{2} g^{22} g_{22,1} &= \Gamma_{12}^2, \\
\frac{q_{22}}{2} g^{12} g_{12,2} - \frac{1}{2} g^{22} g_{22,2} &= \Gamma_{22}^2.
\end{align*}
\]

(3.6.4)

Note that

\[q_{11} = p_{12}, \quad q_{21} = p_{22}. \]

Theorem 3.6.4. The Fundamental Theorem of surfaces in \(\mathbb{R}^3 \).

Suppose \(f : \mathcal{O} \to \mathbb{R}^3 \) is a parametrized surface, and \(g_{ij}, \ell_{ij} \) are the coefficients of I,II. Let \(P, Q \) be the smooth \(\text{gl}(3) \)-valued maps defined in terms of \(g_{ij} \) and \(\ell_{ij} \) by (3.6.3). Then \(P, Q \) satisfy

\[
P_{x_2} - Q_{x_1} = [P, Q].
\]

Conversely, let \(\mathcal{O} \) be an open subset of \(\mathbb{R}^2 \), \((g_{ij}, \ell_{ij}) : \mathcal{O} \to \text{gl}(2) \) smooth maps such that \(g_{ij} \) is positive definite and \(\ell_{ij} \) is symmetric, and \(P, Q : U \to \text{gl}(3) \) the maps defined by (3.6.2). Suppose \(P, Q \) satisfy the compatibility equation (3.6.5). Let \((x^0_1, x^0_2) \in \mathcal{O}, \ p_0 \in \mathbb{R}^3 \), and \(u_1, u_2, u_3 \) a basis of \(\mathbb{R}^3 \) so that \(u_i \cdot u_j = g_{ij}(x^0_1, x^0_2) \) and \(u_i \cdot u_3 = 0 \) for \(1 \leq i, j \leq 2 \). Then there exists an open subset \(\mathcal{O}_0 \subset \mathcal{O} \) of \((x^0_1, x^0_2) \) and a unique immersion \(f : \mathcal{O}_0 \to \mathbb{R}^3 \) so that \(f \) maps \(\mathcal{O}_0 \) homeomorphically to \(f(\mathcal{O}_0) \) such that

1. the first and second fundamental forms of the embedded surface \(f(\mathcal{O}_0) \) are given by \((g_{ij}) \) and \((\ell_{ij}) \) respectively,
2. \(f(x^0_1, x^0_2) = p_0 \), and \(f_x(x^0_1, x^0_2) = u_i \) for \(i = 1, 2 \).

Proof. We have proved the first half of the theorem, and it remains to prove the second half. We assume that \(P, Q \) satisfy the compatibility condition (3.6.5). So Frobenius Theorem ?? implies that the following system has a unique local solution

\[
\begin{align*}
(v_1, v_2, v_3)_{x_1} &= (v_1, v_2, v_3)P, \\
(v_1, v_2, v_3)_{x_2} &= (v_1, v_2, v_3)Q, \\
(v_1, v_2, v_3)(x^0_1, x^0_2) &= (u_1, u_2, u_3).
\end{align*}
\]

(3.6.6)

Next we want to solve

\[
\begin{align*}
f_{x_1} &= v_1, \\
f_{x_2} &= v_2, \\
f(x^0_1, x^0_2) &= p_0.
\end{align*}
\]

The compatibility condition is \((v_1)_{x_2} = (v_2)_{x_1} \). But

\[
(v_1)_{x_2} = \sum_{j=1}^3 q_{j1} v_j, \quad (v_2)_{x_1} = \sum_{j=1}^3 p_{j2} v_j.
\]
It follows from (3.6.2) that the second column of P is equal to the first column of Q. So $(v_1)_{x_2} = (v_2)_{x_1}$, and hence there exists a unique f.

We will prove below that f is an immersion, v_3 is perpendicular to the surface f, $||v_3|| = 1$, $f_{x_i} \cdot f_{x_j} = g_{ij}$, and $(v_3)_{x_i} \cdot f_{x_j} = -\ell_{ij}$, i.e., f is a surface in \mathbb{R}^3 with

$$
I = \sum_{ij} g_{ij} dx_i dx_j, \quad II = \sum_{ij} \ell_{ij} dx_i dx_j
$$

as its first and second fundamental forms. The first step is to prove that the 3×3 matrix function $\Phi = (v_i \cdot v_j)$ is equal to the matrix G defined by (3.6.2). To do this, we compute the first derivative of Φ. Since v_1, v_2, v_3 satisfy (3.6.6), a direct computation gives

$$(v_i \cdot v_j)_{x_1} = (v_i)_{x_1} \cdot v_j + v_i \cdot (v_j)_{x_1},$$

$$= \sum_k p_k i v_k \cdot v_j + p_k j v_k \cdot v_i = \sum_k p_k i g_{jk} + g_{ik} p_{kj},$$

$$= (GP)_{j} + (GP)_{ij} = (GP + (GP)^t)_{ij}.$$

Formula (3.6.2) implies that $GP = G(G^{-1} A_1) = A_1$ and $A_1 + A_1^t = G_{x_1}$. Hence $(GP)^t + GP = G_{x_1}$ and

$$\Phi_{x_1} = G_{x_1}.$$

A similar computation implies that

$$\Phi_{x_2} = G_{x_2}.$$

But the initial value $\Phi(x_1^0, x_2^0) = G(x_1^0, x_2^0)$. So $\Phi = G$. In other words, we have shown that

$$f_{x_i} \cdot f_{x_j} = g_{ij}, \quad f_{x_i} \cdot v_3 = 0.$$

Thus

1. f_{x_1}, f_{x_2} are linearly independent, i.e., f is an immersion,
2. v_3 is the unit normal field to the surface f,
3. the first fundamental form of f is $\sum_{ij} g_{ij} dx_i dx_j$.

To compute the second fundamental form of f, we use (3.6.6) to compute

$$-(v_3)_{x_1} \cdot v_j = (g^{11} \ell_{11} + g^{12} \ell_{12}) v_1 \cdot v_j + (g^{12} \ell_{11} + g^{22} \ell_{12}) v_2 \cdot v_j$$

$$= (g^{11} \ell_{11} + g^{12} \ell_{12}) g_{1j} + (g^{12} \ell_{11} + g^{22} \ell_{12}) g_{2j}$$

$$= \ell_{11} (g^{11} g_{1j} + g^{12} g_{2j}) + \ell_{12} (g^{21} g_{1j} + g^{22} g_{2j})$$

$$= \ell_{11} \delta_{1j} + \ell_{12} \delta_{2j}.$$

So

$$-(v_3)_{x_1} \cdot v_1 = \ell_{11}, \quad -(v_3)_{x_1} \cdot v_2 = \ell_{12}.$$

Similar computations imply that

$$-(v_2)_{x_2} \cdot v_j = \ell_{2j}.$$

This proves that $\sum_{ij} \ell_{ij} dx_i dx_j$ is the second fundamental form of f. \qed

System (3.6.5) with P, Q defined by (3.6.2) is called the **Gauss-Codazzi equation for the surface $f(O)$**, which is a second order PDE with 9 equations for six functions g_{ij} and ℓ_{ij}. Equation (3.6.5) is too complicated to memorize. It is more useful and simpler to just remember how to derive the Gauss-Codazzi equation.

It follows from (3.6.1), (3.6.2), and (3.6.3) that we have
\[f_{x,x_1} = \sum_{j=1}^{2} p_{ij} f_{x_j} + \ell_{i1} N = \sum_{j=1}^{2} \Gamma_{i1}^j f_{x_j} + \ell_{i1} N, \]
\[f_{x,x_2} = \sum_{j=1}^{2} q_{j2} f_{x_j} + \ell_{i2} N = \sum_{j=1}^{2} \Gamma_{i2}^j f_{x_j} + \ell_{i2} N, \]

where \(p_{ij} \) and \(q_{ij} \) are defined in (3.6.2).

So we have

\[
(3.6.7) \quad f_{x,x_j} = \Gamma_{i1}^j f_{x_1} + \Gamma_{i2}^j f_{x_2} + \ell_{ij} N,
\]

Proposition 3.6.5. Let \(f : \mathcal{O} \to \mathbb{R}^3 \) be a local coordinate system of an embedded surface \(M \) in \(\mathbb{R}^3 \), and \(\alpha(t) = f(x_1(t), x_2(t)) \). Then \(\alpha \) satisfies the geodesic equation (3.6.5) if and only if \(\alpha''(t) \) is normal to \(M \) at \(\alpha(t) \) for all \(t \).

Proof. Differentiate \(\alpha' \) to get \(\alpha' = \sum_{i=1}^{2} f_{x_i} x'_i \). So

\[
\alpha'' = \sum_{i,j=1}^{2} f_{x_i,x_j} x'_i x'_j + f_{x_i} x''_i
\]
\[
= \sum_{i,j,k=1}^{2} \Gamma_{ij}^k f_{x_k} x'_i x'_j + \ell_{ij} N + f_{x_i} x''_i
\]
\[
= \sum_{i,j=1}^{2} (\Gamma_{ij}^k x'_i x'_j + x''_i) f_{x_k} + \ell_{ij} N = 0 + \ell_{ij} N = \ell_{ij} N.
\]

\[\square \]

3.7. The Gauss Theorem.

Equation (3.6.5) is the *Gauss-Codazzi equation* for \(M \).

The Gaussian curvature \(K \) is defined to be the determinant of the shape operator \(-dN\), which depends on both the first and second fundamental forms of the surface. In fact, by Proposition 3.6.2,

\[
K = \frac{\ell_{11} \ell_{22} - \ell_{12}^2}{g_{11} g_{22} - g_{12}^2}.
\]

We will show below that \(K \) can be computed in terms of \(g_{ij} \) alone. Equate the 12 entry of equation (3.6.5) to get

\[
(p_{12})_{x_2} - (q_{12})_{x_1} = \sum_{j=1}^{3} p_{1j} q_{j2} - q_{1j} p_{j2}.
\]

Recall that formula (3.6.4) gives \(\{p_{ij}, q_{ij} \mid 1 \leq i, j \leq 2\} \) in terms of the first fundamental form \(I \). We move terms involves \(p_{ij}, q_{ij} \) with \(1 \leq i, j \leq 2 \) to one side
to get

\[(3.7.1) \quad (p_{12})_{x_2} - (q_{12})_{x_1} - \sum_{j=1}^{2} p_{1j} q_{j2} - q_{1j} p_{j2} = p_{13} q_{32} - q_{13} p_{32}.\]

We claim that the right hand side of (3.7.1) is equal to

\[-g^{11}(\ell_{11}\ell_{22} - \ell_{12}^2) = -g^{11}(g_{11} g_{22} - g_{12}^2) K.\]

To prove this claim, use (3.6.2) to compute P, Q to get

\[p_{13} = -(g^{11} \ell_{11} + g^{12} \ell_{12}), \quad p_{32} = \ell_{12},\]
\[q_{13} = -(g^{11} \ell_{12} + g^{12} \ell_{22}), \quad q_{32} = \ell_{22}.\]

So we get

\[(3.7.2) \quad (p_{12})_{x_2} - (q_{12})_{x_1} - \sum_{j=1}^{2} p_{1j} q_{j2} - q_{1j} p_{j2} = -g^{11}(g_{11} g_{22} - g_{12}^2) K.\]

Hence we have proved the claim and also obtained a formula of K purely in terms of g_{ij} and their derivatives:

\[K = -\frac{(p_{12})_{x_2} - (q_{12})_{x_1} - \sum_{j=1}^{2} p_{1j} q_{j2} - q_{1j} p_{j2}}{g^{11}(g_{11} g_{22} - g_{12}^2)}.\]

This proves

Theorem 3.7.1. Gauss Theorem. The Gaussian curvature of a surface in \mathbb{R}^3 can be computed from the first fundamental form.

The equation (3.7.2), obtained by equating the 12-entry of (3.6.5), is the **Gauss equation**.

A geometric quantity on an embedded surface M in \mathbb{R}^n is called **intrinsic** if it only depends on the first fundamental form I. Otherwise, the property is called **extrinsic**, i.e., it depends on both I and II.

We have seen that the Gaussian curvature and geodesics are intrinsic quantities, and the mean curvature is extrinsic.

If $\phi : M_1 \rightarrow M_2$ is a diffeomorphism and $f(x_1, x_2)$ is a local coordinates on M_1, then $\phi \circ f(x_1, x_2)$ is a local coordinate system of M_2. The diffeomorphism ϕ is an **isometry** if the first fundamental forms for M_1, M_2 are the same written in terms of dx_1, dx_2. In particular,

(i) ϕ preserves angles and arc length, i.e., the arc length of the curve $\phi(\alpha)$ is the same as the curve α and the angle between the curves $\phi(\alpha)$ and $\phi(\beta)$ is the same as the angle between α and β,

(ii) ϕ maps geodesics to geodesics.

Euclidean plane geometry studies the geometry of triangles. Note that triangles can be viewed as a triangle in the plane with each side being a geodesic. So a natural definition of a triangle on an embedded surface M is a piecewise smooth curve with three geodesic sides and any two sides meet at an angle lie in $(0, \pi)$. One important problem in geometric theory of M is to understand the geometry of triangles on M. For example, what is the sum of interior angles of a triangle on an embedded surface M? This will be answered by the Gauss-Bonnet Theorem.
Note that the first fundamental forms for the plane
\[f(x_1, x_2) = (x_1, x_2, 0) \]
and the cylinder
\[h(x_1, x_2) = (\cos x_1, \sin x_1, x_2) \]
have the same and is equal to \(I = dx_1^2 + dx_2^2 \), and both surfaces have constant zero Gaussian curvature (cf. Examples ?? and ??). We have also proved that geodesics are determined by \(I \) alone. So the geometry of triangles on the cylinder is the same as the geometry of triangles in the plane. For example, the sum of interior angles of a triangle on the plane (and hence on the cylinder) must be \(\pi \). In fact, let \(\phi \) denote the map from \((0, 2\pi) \times \mathbb{R} \) to the cylinder minus the line \((1, 0, x_2)\) defined by
\[\phi(x_1, x_2, 0) = (\cos x_1, \sin x_1, x_2). \]
Then \(\phi \) is an isometry.

3.8. Gauss-Codazzi equation in orthogonal coordinates.

If the local coordinates \(x_1, x_2 \) are orthogonal, i.e., \(g_{12} = 0 \), then the Gauss-Codazzi equation (3.6.5) becomes much simpler. Instead of putting \(g_{12} = 0 \) to (3.6.5), we derive the Gauss-Codazzi equation directly using an o.n. moving frame.

We write
\[g_{11} = A_1^2, \quad g_{22} = A_2^2, \quad g_{12} = 0. \]

Let
\[e_1 = \frac{f_{x_1}}{A_1}, \quad e_2 = \frac{f_{x_2}}{A_2}, \quad e_3 = N. \]

Then \((e_1, e_2, e_3) \) is an o.n. moving frame on \(M \). Write
\[\left\{ (e_1, e_2, e_3)_{x_1} = (e_1, e_2, e_3) \tilde{P}, \right. \]
\[\left. (e_1, e_2, e_3)_{x_2} = (e_1, e_2, e_3) \tilde{Q}. \right. \]

Since \((e_1, e_2, e_3) \) is orthogonal, \(\tilde{P}, \tilde{Q} \) are skew-symmetric. Moreover,
\[\tilde{p}_{ij} = (e_j)_{x_i} \cdot e_i, \quad \tilde{q}_{ij} = (e_j)_{x_2} \cdot e_i. \]

A direct computation gives
\[(e_1)_{x_1} \cdot e_2 = \frac{f_{x_1}}{A_1} \frac{f_{x_2}}{A_2} - \frac{f_{x_1 x_2} \cdot f_{x_1}}{A_1 A_2} = \frac{(f_{x_1} \cdot f_{x_2})_{x_1} - f_{x_1} \cdot f_{x_1 x_2}}{A_1 A_2} = -\frac{(\frac{1}{2} A_1^2)_{x_2}}{A_1 A_2} = -\frac{(A_1)_{x_2}}{A_2}. \]

Similar computation gives the coefficients \(\tilde{p}_{ij} \) and \(\tilde{q}_{ij} \):

\[(3.8.1) \quad \tilde{P} = \begin{pmatrix} 0 & \frac{(A_1)_{x_2}}{A_2} & -\frac{\ell_{11}}{A_1} \\ \frac{(A_1)_{x_2}}{A_2} & 0 & -\frac{\ell_{12}}{A_2} \\ -\frac{\ell_{11}}{A_1} & -\frac{\ell_{12}}{A_2} & 0 \end{pmatrix}, \quad \tilde{Q} = \begin{pmatrix} 0 & -\frac{(A_2)_{x_1}}{A_1} & -\frac{\ell_{12}}{A_1} \\ -\frac{(A_2)_{x_1}}{A_1} & 0 & -\frac{\ell_{22}}{A_2} \\ -\frac{\ell_{12}}{A_1} & -\frac{\ell_{22}}{A_2} & 0 \end{pmatrix}. \]
To get the Gauss-Codazzi equation of the surface parametrized by an orthogonal coordinates we only need to compute the 21-th, 31-th, and 32-the entry of the following equation

\[(\bar{P})_{x_2} - (\bar{Q})_{x_1} = [\bar{P}, \bar{Q}],\]

and we obtain

\[
\begin{cases}
- \left(\frac{(A_1)_{x_2}}{A_2}\right)_{x_2} - \left(\frac{(A_2)_{x_1}}{A_1}\right)_{x_1} = \ell_{11} \ell_{22} - \ell_{12}^2, \\
\left(\frac{\ell_{11}}{A_1}\right)_{x_2} - \left(\frac{\ell_{12}}{A_1}\right)_{x_1} = \frac{\ell_{12}(A_2)_{x_1}}{A_1 A_2} + \frac{\ell_{22}(A_1)_{x_2}}{A_2^2}, \\
\left(\frac{\ell_{12}}{A_2}\right)_{x_2} - \left(\frac{\ell_{22}}{A_2}\right)_{x_1} = -\frac{\ell_{11}(A_2)_{x_1}}{A_2^2} - \frac{\ell_{12}(A_1)_{x_2}}{A_1 A_2}.
\end{cases}
\]

The first equation of (3.8.2) is called the Gauss equation. Note that the Gaussian curvature is

\[K = \frac{\ell_{11} \ell_{22} - \ell_{12}^2}{(A_1 A_2)^2}.\]

So we have

\[
K = -\left(\frac{(A_1)_{x_2}}{A_2}\right)_{x_2} + \left(\frac{(A_2)_{x_1}}{A_1}\right)_{x_1}.
\]

We have seen that the Gauss-Codazzi equation becomes much simpler in orthogonal coordinates. Can we always find local orthogonal coordinates on a surface in \(\mathbb{R}^3\)? This question can be answered by the following theorem, which we state without a proof.

Theorem 3.8.1. Suppose \(f : \mathcal{O} \to \mathbb{R}^3\) be a surface, \(x_0 \in \mathcal{O}\), and \(Y_1, Y_2 : \mathcal{O} \to \mathbb{R}^3\) smooth maps so that \(Y_1(x_0), Y_2(x_0)\) are linearly independent and tangent to \(M = f(\mathcal{O})\) at \(f(x_0)\). Then there exist open subset \(\mathcal{O}_0\) of \(\mathcal{O}\) containing \(x_0\), open subset \(\mathcal{O}_1\) of \(\mathbb{R}^2\), and a diffeomorphism \(h : \mathcal{O}_1 \to \mathcal{O}_0\) so that \((f \circ h)_{y_1}\) and \((f \circ h)_{y_2}\) are parallel to \(Y_1 \circ h\) and \(Y_2 \circ h\), respectively.

The above theorem says that if we have two linearly independent vector fields \(Y_1, Y_2\) on a surface, then we can find a local coordinate system \(\phi(y_1, y_2)\) so that \(\phi_{y_1}, \phi_{y_2}\) are parallel to \(Y_1, Y_2\) respectively.

Given an arbitrary local coordinate system \(f(x_1, x_2)\) on \(M\), we apply the Gram-Schmidt process to \(f_{x_1}, f_{x_2}\) to construct smooth o.n. vector fields \(e_1, e_2:\)

\[
e_1 = \frac{f_{x_1}}{\sqrt{g_{11}}},
\]

\[
e_2 = \frac{\sqrt{g_{11}}(f_{x_2} - \frac{g_{12}}{g_{11}} f_{x_1})}{\sqrt{g_{11}g_{22} - g_{12}^2}}.
\]

By Theorem 3.8.1, there exists new local coordinate system \(\tilde{f}(y_1, y_2)\) so that \(\frac{\partial f}{\partial x_1}\) and \(\frac{\partial f}{\partial x_2}\) are parallel to \(e_1\) and \(e_2\). So the first fundamental form written in this coordinate system has the form

\[
\tilde{g}_{11} dy_1^2 + \tilde{g}_{22} dy_2^2.
\]

However, in general we can not find coordinate system \(\tilde{f}(y_1, y_2)\) so that \(e_1\) and \(e_2\) are coordinate vector fields \(\frac{\partial f}{\partial y_1}\) and \(\frac{\partial f}{\partial y_2}\) because if we can then the first fundamental form of the surface is \(I = dy_1^2 + dy_2^2\), which implies that the Gaussian curvature of the surface must be zero.